

Título del proyecto: "CÁLCULO Y DISEÑO DE RED DE AIRE COMPRIMIDO, REVISIÓN DE INSTALACIÓN ELÉCTRICA Y SEGURIDAD E HIGIENE EN TALLER MECÁNICO."

Autor: Esteban Roberto Gonzalez Barrionuevo.

Tutor Académico: Ing. Nicolas Schpetter – Instalaciones Industriales.

Grado académico alcanzado: Ingeniero Electromecánico (Plan 2014).

Lugar de presentación: Ciudad de Neuquén.

Año: 2021.

Fecha de aprobación: 19/08/21 – Acta 106085.

Jurado:

- Ing. Daniel Mandrile Facultad de Ingeniería.
- Ing. Néstor García Facultad de Ingeniería.
- Ing. Ariel Castellino Facultad de Ingeniería.

Resumen:

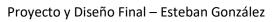
El proyecto y diseño final para la carrera Ingeniería Electromecánica contempla el cálculo y diseño de una red de aire comprimido, la revisión y cálculo de las instalaciones de baja tensión, revisión y cálculo de la iluminación interior, y cálculo de la carga de fuego del local, y la reubicación de los extintores de incendio.

El proyecto fue realizado en el taller automotriz, "Electrónica Check" situado en calle Saturnino Torres N° 1045, de la Ciudad de Neuquén, provincia de Neuquén. Se consideraron las reglamentaciones vigentes, disposiciones de la cooperativa CALF y demandas previstas por operarios y el dueño del taller.

La finalidad del proyecto se basó en buscar la mejor solución técnico económica y que ofrezca la posibilidad de adecuar las instalaciones preexistentes.

Palabras clave: aire comprimido, instalación eléctrica, seguridad e higiene, iluminación.

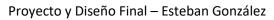
Abstract:


The final project and design for the Electromechanical Engineering career includes the calculation and design of a compressed air network, the revision and calculation of low voltage installations, revision and calculation of interior lighting, and calculation of the fire load of the premises, and the relocation of fire extinguishers.

The project was carried out in the automotive workshop, "Electrónica Check" located in Saturnino Torres Street N° 1045, in the City of Neuquén, province of Neuquén. The current regulations, provisions of the CALF cooperative and demands foreseen by operators and the owner of the workshop were considered.

The purpose of the project was based on finding the best technical and economic solution that offers the possibility of adapting the pre-existing facilities.

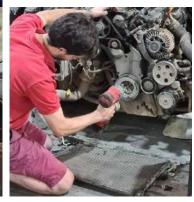
Keywords: compressed air, electrical installation, safety, lighting.



Índice

1 Introduce		roduc	ción	3
	1.1	Des	cripción de la empresa	3
	1.2	Des	arrollo del proyecto	4
	1.3	ANE	XO 1 – PLANO DEL TALLER	5
2	Dis	tribuc	ión de Aire Comprimido	6
	2.1	Mer	moria Descriptiva	7
	2.2	Mer	noria Técnica	8
	2.2	.1	Máquinas y Herramientas	8
	2.2	.2	Compresor	. 10
	2.2	.3	Tanque pulmón	. 10
	2.2	.4	Sistemas de tratamiento de aire	. 11
	2.2	.5	Unidad FRL	. 11
	2.2	.6	Cañería	. 11
	2.2	.7	Accesorios	. 11
	2.3	Mer	noria de cálculo	. 12
	2.3	.1	Cálculo de consumos	. 12
	2.3	.2	Selección del compresor	. 13
	2.3	.3	Cálculo del compresor	. 14
	2.3	.4	Cálculo y selección del tanque pulmón	. 15
	2.3	.5	Cálculo del condensado del tanque pulmón	. 18
	2.3	.6	Cálculo de cañerías	. 20
	2.3	.7	Selección de la unidad FRL	. 23
	2.3	.8	Verificación de la presión de trabajo de las cañerías	. 23
	2.3	.9	Verificación de velocidad máxima de cada tramo	. 26
	2.4	ANE	XO 2 – PLANOS DE AIRE COMPRIMIDO	. 27
3	Seg	gurida	d e Higiene	. 28
	3.1	Mer	noria Descriptiva	. 29
	3.2	Mer	noria técnica	. 30
	3.2	.1	Equipos y herramientas	. 30
	3.2	.2	Equipos de protección personal (EPP)	. 30
	3.2	.3	Teléfonos útiles	. 34
	3.2	.4	Checklist	. 34
	3.3	Mer	noria de cálculo	. 43
	3.3	.1	Iluminación Interior	. 43

	3.3.	2	Incendio	49
	3.4	ANE	EXO 3 – PLANOS DE SEGURIDAD E HIGIENE	64
4	Inst	alacio	ón Eléctrica	65
	4.1	Mei	moria Descriptiva	65
	4.2	Mei	moria Técnica	66
	4.2.	1	Circuitos Principales y seccionales	66
	4.2.	2	Conductores	66
	4.2.	3	Canalizaciones	67
	4.2.	4	Elementos de protección	68
	4.2.	5	Puesta a tierra	69
	4.2.	6	Gabinetes	71
	4.2.	7	Propuesta de mejora de iluminación interior	71
	4.3	Mei	moria de Cálculo	73
	4.3.	1	Determinación de la demanda de potencia máxima simultánea (DPMS)	73
	4.3.	2	Determinación de la corriente de los circuitos y máxima por fase (IB)	79
	4.3.	3	Selección del conductor a partir de su corriente máxima admisible (IZ)	80
	4.3.	4	Elección de la corriente asignada de los dispositivos de protección In	83
	4.3.	5	Verificación de la protección por sobrecarga	84
	4.3.	6	Determinación de la corriente de cortocircuito (l''K)	85
	4.3.	7	Verificación por máxima exigencia térmica	90
	4.3.		Verificación de la actuación de la protección por corriente mínima de	
			cuito	
	4.3.	9	Verificación de la caída de tensión, mediante el método de GDC	
	4.3.	_	Cálculo y selección de canalizaciones	
	4.3.		Selección de gabinetes y verificación de disipación de calor	
	4.3.		Puesta a tierra	
	4.4		culo y diseño de iluminación interior	
	4.4.		Método de los lúmenes	
	4.4.		Cálculos	
	4.4.	_	Comprobación de los resultados	
_	4.5		EXO 4 – PLANOS DE LA INSTALACIÓN ELÉCTRICA	
5	Bibl	ıogra	fía	113


1 Introducción

El presente informe presenta el proyecto y diseño final "Calculo y diseño de la instalación eléctrica, de aire comprimido y seguridad e higiene en taller mecánico", correspondiente al proyecto y diseño final (PyDF). Dicho proyecto se efectuó conforme a lo estipulado por la resolución N° 158/18 del Consejo Directivo para la carrera Ingeniería Electromecánica (Plan 2014) de la Facultad de Ingeniería.

El mismo fue realizado en el taller mecánico "Electrónica Check", ubicado en la calle Saturnino Torres N° 999, de la ciudad de Neuquén, provincia de Neuquén.

1.1 Descripción de la empresa

"Electrónica Check" es una empresa dedicada a la reparación de vehículos, haciendo énfasis en las fallas que involucran a la parte electrónica de los vehículos (sensores, airbags, sistema ABS, inyección electrónica, puesta a punto de ECUS y reparaciones varias)

La empresa fue creada en el año 2019 por Ezequiel Lamo, en la ciudad de Neuquén, provincia del mismo nombre.

Para el año 2020, el taller se asocia con otro taller mecánico y un taller de estética vehicular para funcionar juntos en el mismo taller, en el cual se desarrolla este proyecto y diseño.

El taller cuenta con una superficie de 400 metros cuadrados y cuenta con 5 empleados.

1.2 Desarrollo del proyecto

En la actualidad, el taller enfrenta ciertas dificultades en cuanto sus instalaciones y aspectos de seguridad e higiene, la misión de este proyecto es resolver los siguientes problemas:

El taller mecánico no cuenta con una instalación de aire comprimido para máquinas y herramientas, por lo cual se diseñará una teniendo en cuenta lo visto en la catedra de Instalaciones Industriales.

El taller no cuenta con un sistema óptimo de seguridad e higiene que asegure el cumplimiento de la legislación vigente, es decir, que se adapte a la Ley N° 19587 reglamentada por el Decreto N° 351/79, con el objetivo de preservar el bienestar de los operarios y de los equipos e instalaciones presentes en dicha empresa.

La instalación eléctrica no cumple con la reglamentación vigente (AEA90364-7-771), por lo tanto, se diseñará desde 0 toda la instalación eléctrica en baja tensión.

En resumen, el proyecto consta de las siguientes etapas:

Etapa N°1: Estudiar y analizar el material bibliográfico y las reglamentaciones vigentes para poder realizar el proyecto.

Etapa N°2: Realizar un relevamiento del taller, de sus equipos e instalaciones, para realizar un Lay-Out.

Etapa N°3: Realizar el cálculo y diseño de la red de aire comprimido.

Etapa N°4: Relevar y rediseñar la instalación eléctrica y la iluminación del taller en caso de que fuese necesario.

Etapa N°5: Hacer un relevamiento de la seguridad e higiene, realizar los cálculos de carga de fuego, extintores, medios de escape, iluminación y aplicar correcciones en caso de que fuese necesario.

Etapa N°6: Documentar el trabajo realizado.

Los planos confeccionados para el proyecto y diseño final se encuentran en los siguientes ANEXOS:

- ANEXO I: Plano del taller (Lay-Out).
- ANEXO II: Planos de la instalación de aire comprimido.
- ANEXO III: Planos de seguridad e higiene.
- ANEXO IV: Planos de la instalación eléctrica.

1.3 ANEXO 1 – PLANO DEL TALLER

2 Distribución de Aire Comprimido

2.1 Memoria Descriptiva

El primer capítulo del presente Proyecto y Diseño Final abarca el diseño de la red de distribución de Aire Comprimido del taller mecánico. Partiendo del plano del taller, se genera un Lay-Out del mismo, en el cual se especifican los correspondientes puntos de consumo de cada maquinaria, contemplando futuras ampliaciones, el cual se presenta en el ANEXO I.

El suministro de aire comprimido se hará por medio de un compresor a tornillo, el cual se encuentra junto al tanque pulmón en posición vertical en el sector de servicios.

La traza de las cañerías se realizará de forma ramificada, esta configuración tiene la ventaja de ser más económica que una red de tipo anillo ya que las distancias recorridas por las cañerías, la cantidad de accesorios y la perdida de carga es menor.

Teniendo en cuenta que el aire contiene humedad, y para evitar que circule condensado de agua en las cañerías se tomaron los siguientes recaudos:

- Las cañerías tendrán una pendiente en el sentido del flujo del aire del 3% y en el extremo de cada línea se colocará una purga.
- Todas las derivaciones serán tomadas de la parte superior de la línea.
- Las cañerías de servicio que van a cada máquina bajarán hasta una altura de 1.5 [m]desde el nivel del suelo. En el extremo de las cañerías se colocarán válvulas esféricas para poder cortar el suministro a cada máquina en forma independiente, y en las maquinas manuales válvulas de acople rápido para permitir la conexión y desconexión de las máquinas. Dependiendo del caso se colocará también sistemas tipo FRL o FR.
- Las cañerías estarán dispuestas sobre ménsulas vinculadas a la estructura de la nave industrial y serán pintadas de color azul para permitir su inmediata identificación

Por último, la ubicación del compresor, tanque pulmón, máquinas, cañerías principales, secundarias, de servicio, accesorios y demás elementos que forman parte de la instalación de aire comprimido se encuentran debidamente detallados y referenciados en los planos en el ANEXO II.

2.2 Memoria Técnica

En este apartado se especifican los datos técnicos de todos los componentes de la instalación (herramientas, maquinas, compresor, tanque pulmón, cañerías y accesorios).

2.2.1 Máquinas y Herramientas

2.2.1.1 Sector taller

Gatillo inflador de neumáticos				
Marca	Mighty Seven			
Modelo	SB215			
Entrada de aire (pulg.)	1/4			
Presión de trabajo (bar)	6.3	- ()*		
Consumo (NI/min)	39			

Tabla 2.1 – Gatillo inflador de neumáticos

	Pistola de soplado	
Marca	Mighty Seven	
Modelo	JC405	
Entrada de aire (pulg.)	1/4	
Presión de trabajo (bar)	5.3	
Consumo (NI/min)	368	
Nivel sonoro (dBA)	90) •

Tabla 2.2 - Pistola de soplado

	Llave de impacto3/8"	
Marca	Mighty Seven	
Modelo	NC3210	
Torque Máximo (Nm)	474	
Entrada de aire (pulg.)	1/4	
Presión de trabajo (bar)	6.3	# 17/A
Consumo (NI/min)	133	14/4
Nivel sonoro (dBA)	92.1	

Tabla 2.3 – Llave de impacto 3/8"

Llave de impacto 1/2"				
Marca	Mighty Seven			
Modelo	NC4236A			
Torque Máximo (Nm)	1356			
Entrada de aire (pulg.)	1/4			
Presión de trabajo (bar)	6.3	A17)		
Consumo (NI/min)	155	100		
Nivel sonoro (dBA)	87			

Tabla 2.4 – Llave de impacto 1/2"

	Atornillador Recto	
Marca	Mighty Seven	1
Modelo	RA105	
Torque (Nm)	22	
Entrada de aire (pulg.)	1/4	
Presión de trabajo (bar)	6.3	
Consumo (NI/min)	241	
Nivel sonoro (dBA)	96.7	

Tabla 2.5 – Atornillador recto

Taladro Angular				
Marca	Mighty Seven			
Modelo	QE343			
Entrada de aire (pulg.)	1/4			
Diámetro del mandril (mm)	13			
Presión de trabajo (bar)	6.3			
Consumo (NI/min)	183			
Nivel sonoro (dBA)	97.5	-		

Tabla 2.6 – taladro angular

Pistola Engrasadora		
Marca	Rodcraft	
Modelo	RC8141	
Volumen del cartucho (ml)	400	
Entrada de aire (pulg.)	1/4	
Presión de trabajo (bar)	7	
Consumo (NI/min)	90	

Tabla 2.7 – Pistola engrasadora

2.2.1.2 Sector estética vehicular

	Pistola de Limpieza	
Marca	Mighty Seven	5
Modelo	SX2101	1
Entrada de aire (pulg.)	3/8	
Presión de trabajo (bar)	6.3	
Consumo (NI/min)	56.6	
Nivel sonoro (dBA)	85	

Tabla 2.8 – Pistola de limpieza

	Pulidora Angular	
Marca	Mighty Seven	
Modelo	QP317	
Tamaño disco (mm)	178	
Entrada de aire (pulg.)	3/8	
Presión de trabajo (bar)	6.3	
Consumo (NI/min)	169	
Nivel sonoro (dBA)	84	

Tabla 2.9 – Pulidora Angular

Lijadora Orbital				
Marca	Mighty Seven			
Modelo	QP215			
Entrada de aire (pulg.)	3/8			
Presión de trabajo (bar)	6.3	40		
Consumo (NI/min)	184			
Nivel sonoro (dBA)	60			

Tabla 2.10 – Lijadora Orbital

Herramienta oscilante (Desmontador de parabrisas)							
Marca	Mighty Seven						
Modelo	QK111	V-					
Entrada de aire (pulg.)	1/4	1117					
Presión de trabajo (bar)	6.3						
Consumo (NI/min)	170						
Nivel sonoro (dBA)	75						

Tabla 2.11 – Herramienta oscilante

2.2.2 Compresor

Compresor								
Marca	KAESER	V						
Modelo	SM-15							
Presión de Trabajo (bar)	7.5	<u> </u>						
Presión Máxima (bar)	8	SK 15 T moudes						
Caudal (m3/min)	1.5							
Consumo (Nm3/min)	1.5							
Potencia (kW)	9							
Nivel sonoro (dBA)	66							

Tabla 2.12 – Compresor

2.2.3 Tanque pulmón

Tanque pulmón							
Marca	KAESER	2					
Volumen (m³)	0.25	10					
Presión Máxima (bar)	11						
Conexión (pulgadas)	2 x G ¾	1 5					
Dimensiones (mm)	1545 x 1410						
Peso (kg)	100						
Disposición	Vertical	The state of the s					

Tabla 2.13 – Tanque pulmón

2.2.4 Sistemas de tratamiento de aire

2.2.5 Unidad FRL

Unidad FRL								
Fabricante	FESTO	DATE:						
Modelo	MSB6-1/2-FRC5							
Presión de funcionamiento	0.5 – 12 bar							
Caudal nominal normal	3700 l/min	171						
Conexión	G 1/2	ű.e						

Tabla 2.14 – Unidad FRL

2.2.6 Cañería

La cañería a utilizar será de acero ASTM A53, Grado A, con un espesor bajo Schedule (cedula) 40, y un largo de 6.4m, con uniones roscadas. En la Tabla 2.15 se especifica la cantidad de caño y su dimensión necesaria para el proyecto

Tramo	Longitud (m)	Diámetro (pulgadas)	Schedule	Cantidad de Caños (longitud comercial 6.4m)
Compresor - Pulmón	1.5	1	40	2
Principal	7	1	40	
0-1	9.5	3/4	40	Ć
0-6	25	3/4	40	6
C1	3	1/2	40	
C2	3	1/2	40	
C3	3	1/2	40	
C4	3	1/2	40	4
C 5	3	1/2	40	4
C6	3	1/2	40	
Purga 1	3	1/2	40	
Purga 2	3	1/2	40	

Tabla 2.15 - Cañería

2.2.7 Accesorios

Los accesorios utilizados serán roscados, de acero forjado y/o bronce, serie 2000, se detallan en la Tabla 2.16

Tramo	Diámetro (pulgadas)	Codos	Tees	Válvulas Exclusa	Válvulas de bola
Compresor- Pulmón	1	2	0	1	0
Principal	1	9	0	1	0
01	3/4	0	2	0	0
06	3/4	1	5	0	0
C1	1/2	2	1	0	1
C2	1/2	2	1	0	1
С3	1/2	2	1	0	1
C4	1/2	2	1	0	1
C5	1/2	2	1	0	1
C6	1/2	2	1	0	1

Tabla 2.16 - Accesorios

2.3 Memoria de cálculo

2.3.1 Cálculo de consumos

2.3.1.1 Aire Libre

Los valores de caudal de aire comprimido, tanto para su producción como para el consumo del mismo, se expresan generalmente en unidades de "Aire Libre", es decir, de aire tomado de la atmosfera.

Para ello y siendo que las condiciones atmosféricas del ambiente resultan con parámetros muy disimiles se hizo necesario definir una serie de parámetros, que al momento de diseñar tanto los equipos para su producción como para las diversas herramientas y dispositivos neumáticos que lo consumen existiera una relación constante y universal, los parámetros que conforman la llamada "Atmosfera Normal de Referencia" son

- Temperatura = 20°C
- Presión = 1 Atmosfera = 1,013 bar
- Humedad Relativa = 65%

A partir de esta normalización, y salvo que se indique específicamente lo contrario, se entiende que las características de todo "aparato" que trabaje con aire comprimido se explicitan sobre la base de su equivalencia a un aire en condiciones de Atmósfera Normal de Referencia.

Así, por ejemplo, para el caso de un equipo compresor de aire, en lugar de expresarse el caudal de aire capaz de comprimir se expresa el caudal de aire aspirado del ambiente en condiciones de una ANR. Para clarificar aún más lo establecido se acostumbra anteponer la letra "N" (indicando por Normal) al caudal que se mencione, expresándose por ejemplo que la capacidad de tal compresor es de tantos Nm³/minuto.

Para calcular la equivalencia entre caudales de consumo y de generación, suponiendo que la conversión se practicara a una temperatura constante = 20°C (igual a la temperatura de la ANR), se utiliza una fórmula simple, la que nos permite convertir el "volumen de aire comprimido" en volumen de "Aire Libre", a saber:

$$Q_{AL} = Q_{AC} * (\frac{Pr + Pa}{Pa})$$

Ecuación 2.1 – Cálculo del caudal de aire libre

Donde:

- Q_{AL} Es el caudal de "Aire Libre" en (Nm³/min)
- Q_{AC} Es el caudal de aire comprimido para su consumo (m3/min)
- PrEs la presión relativa del aire comprimido
- PαEs la presión atmosférica (1,033 kg/cm²)

Puesto y considerando de que las máquinas y herramientas no trabajan al 100% todo el tiempo el consumo está afectado a un porcentaje de operación (%op), en la siguiente tabla se detallan los resultados obtenidos.

Punto	Herramienta	Cantidad	% op	Presión de trabajo (kg/cm2)	Consumo unitario (NI/min)	Consumo Total (N m3/min)
1	Inflador de neumático	1 50 6,3 39		39	0,020	
1	llave de impacto 1/2	1	40	6,3	155	0,062
1	Pistola Engrasadora	1	30	7,0	90	0,027
2	Atornillador Recto	1	50	6,3	241	0,121
3	Taladro Angular	1	30	6,3	183	0,055
4	Pistola de soplado	1	40	5,3	368	0,147
4	Pistola de Limpieza	1	55	6,3	57	0,031
4	Lijadora Orbital	1	40	6,3	184	0,074
4	Herramienta Oscilante	1	30	6,3	170	0,051
2 y 3	llave de impacto 3/8	2	40	6,3	133	0,106
5 y 6	Pulidora Angular	2	60	6,3	169	0,203
		Subtota	al			0,896
		Perdidas ((5%)			0,045
	Α	mpliacione	s (20%)		0,179
		Total				1,120

Tabla 2.17 – Consumos de aire normal

Nota: la ubicación de las máquinas y herramientas se detallan en el Lay-Out, ver anexo I

2.3.2 Selección del compresor

2.3.2.1 Compresores

Son máquinas que aspiran el aire ambiente a la presión atmosférica y lo comprimen hasta conferirle una presión superior.

Existen varios tipos de compresores, su elección depende de las necesidades y características de utilización.

Para este proyecto se considerará la elección entre un compresor a pistón y un compresor a tornillo, los cuales se detallan brevemente a continuación.

2.3.2.2 El compresor de pistón

El compresor de aire disponible más económico y menos costoso es el compresor de aire de pistón o alternativo. Se trata de un compresor de aire muy simple y robusto que se utiliza en muchos talleres pequeños. A menudo se puede encontrar el compresor de pistón en pequeños talleres de maquinaria, carrocería y neumáticos, así como en pequeñas instalaciones de fabricación. Los compresores de pistón son relativamente fáciles de mantener y, como se mencionó anteriormente, requieren una inversión mínima. Teniendo en cuenta que los compresores de pistón son económicos, se deben tener en cuenta algunos inconvenientes antes de tomar una decisión.

Los compresores de pistón solo están pensados para un uso intermitente, lo que significa que pueden trabajar solamente alrededor del 50-60 % de su ciclo de trabajo. Esto implica que funcionarán de 30 a 35 minutos cada hora durante su ciclo de trabajo. Estas unidades requieren un tiempo de refrigeración adecuado entre ciclos, pues de lo contrario se sobrecalentarán o

fallarán. También es importante comprender que los compresores de pistón sueltan mucho aceite aguas abajo que, si no se trata adecuadamente, puede dañar las máquinas que utilizan el aire comprimido. Por último, los compresores de pistón tienden a ser muy ruidosos cuando están en funcionamiento, lo que puede perjudicar a los empleados que trabajan cerca del compresor.

2.3.2.3 El compresor de tornillo rotativo

A diferencia de los compresores de pistón, los compresores de aire de tornillo rotativo se utilizan para las operaciones que requieren un ciclo de trabajo 100 % continuo y están construidos para funcionar de manera fiable durante una larga vida útil. Los compresores de aire de tornillo rotativo son una gran alternativa a las unidades de pistón y hay varios tipos disponibles, en función de cada necesidad y presupuesto. Una de sus opciones es la capacidad de integrar un secador en el paquete, lo que resulta ideal para las aplicaciones que requieren aire limpio y seco.

Además, los compresores de tornillo más pequeños se pueden montar sobre un depósito para disfrutar de una capacidad de almacenamiento adicional que, junto con un secador integrado, ofrece una instalación lista para funcionar. Esta opción es perfecta si el espacio en las instalaciones es limitado y si quiere ahorrar en costes de instalación.

En función del presupuesto, hay un compresor de tornillo para cada necesidad: desde el diseño básico, generalmente disponible en rangos pequeños de kW/CV, hasta las unidades de accionamiento de velocidad (frecuencia) variable (VSD). Aunque estas son más caras, se suele compensar el coste inicial con el ahorro de energía.

Para este proyecto se seleccionará un compresor a tornillos. A continuación, se detalla el procedimiento de cálculo

2.3.3 Cálculo del compresor

El caudal del compresor se obtiene de la Ecuación 2.2:

$$Q_C = \frac{Q_D}{C}$$

Ecuación 2.2 – Cálculo del caudal del compresor

Dónde:

- Q_C es el caudal del compresor
- Q_D es el caudal proyectado para la instalación
- *C* es el coeficiente de consumo para paradas del compresor.

Adoptando un coeficiente de utilización del 88%, el caudal del compresor será de:

$$Q_C = \frac{1.12}{0.88} = 1.27$$

Con este caudal y teniendo en cuenta que la presión necesaria para la instalación (8 bar) se selecciona un compresor del fabricante KAESER de la Tabla 2.18:

Serie SX - ASK

Compresores de tornillo con transmisión por correas en V - hasta 22 kW

Modelo	Sobrepr. de servicio	Caudal *) unidad completa a sobrepr de servicio	Sobrepr. mäx.	Pot.nominal motor kW	Dimensiones an x prof x al	Conexión Aire comprimido	Nivel de presión acústica **)	Peso
	bar	m¥min	bar		mm		dB(A)	kg
SX 3	7,5 10	0,34 0,26	8 11	2,2	590 x 632 x 970		59	140
SX 4	7,5 10 13	0,45 0,36 0,26	8 11 15	3	590 x 632 x 970		60	140
SX 6	7,5 10 13	0,60 0,48 0,37	8 11 15	4	590 x 632 x 970	G¾,	61	145
SX 8	7,5 10 13	0,80 0,67 0,54	8 11 15	5,5	590 x 632 x 970		64	155
SM 9	7,5 10 13	0,90 0,75 0,56	8 11 15	5,5	630 x 762 x 1100		64	200
SM 12	7,5 10 13	1,20 1,01 0,77	8 11 15	7,5	630 x 762 x 1100	G %	65	210
SM 15	7,5 10 13	1,50 1,26 0,99	8 11 15	9	630 x 762 x 1100		66	220
SK 22	7,5 10 13	2,00 1,68 1,32	8 11 15	11	750 x 895 x 1260	G1	66	312
SK 25	7,5 10 13	2,50 2,11 1,72	8 11 15	15	750 x 895 x 1260	G.	67	320
ASK 28	7,5 10 13	2,86 2,40 1,93	8 11 15	15	800 x 1100 x 1530		65	485
ASK 34	7,5 10 13	3,51 3,00 2,50	8 11 15	18,5	800 x 1100 x 1530	G11/4	67	505
ASK 40	7,5 10 13	4,06 3,52 2,94	8 11 15	22	800 x 1100 x 1530		69	525

Tabla 2.18 - Selección del compresor, fabricante KAESER

El compresor seleccionado es el modelo SM-15, con una presión de servicio de 7.5 kg/cm2 y un caudal nominal de 1.5 Nm³/min; el cual se detalla en la memoria técnica, en la Tabla 2.12.

2.3.4 Cálculo y selección del tanque pulmón

Para el cálculo del volumen del tanque pulmón se utiliza la Ecuación:

$$\frac{V_D}{Q_C} = \frac{t}{t_O}$$

Ecuación 2.3 – Cálculo de volumen del tanque pulmón

Dónde:

- V_D es el volumen del tanque pulmón (m3)
- Q_C es el caudal del compresor (Nm3/min)
- t_O es el tiempo de operación por hora (min)
- t es el tiempo de operación (min)

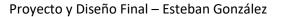
Sabiendo que la cantidad máxima de operaciones por hora de un compresor a tornillo son 40, el tiempo de operación será de:

$$t = \frac{60}{40} = 1.5 \, min$$

El Gráfico 2.1 permite obtener el tiempo de operación por hora (to), el tiempo de marcha (tm) y el tiempo de parada (tp) en función del coeficiente de consumo (C)

Para el coeficiente de consumo del 88% se obtiene un tiempo de operación por hora de:

$$t_0 = 9 min$$


Entonces utilizando la Ecuación 2.3, el volumen del tanque pulmón será de:

$$V_D = \frac{t}{t_O} * Q_C$$

$$V_D = \frac{1.5 \ min}{9 \ min} * 1.5 \frac{Nm^3}{h} = 0.25 \ m^3 = 250 \ l$$

Se seleccionará un tanque pulmón de 0.25 m³ del fabricante KAESER, el cual se detalla en la memoria técnica, en la Tabla 2.13.

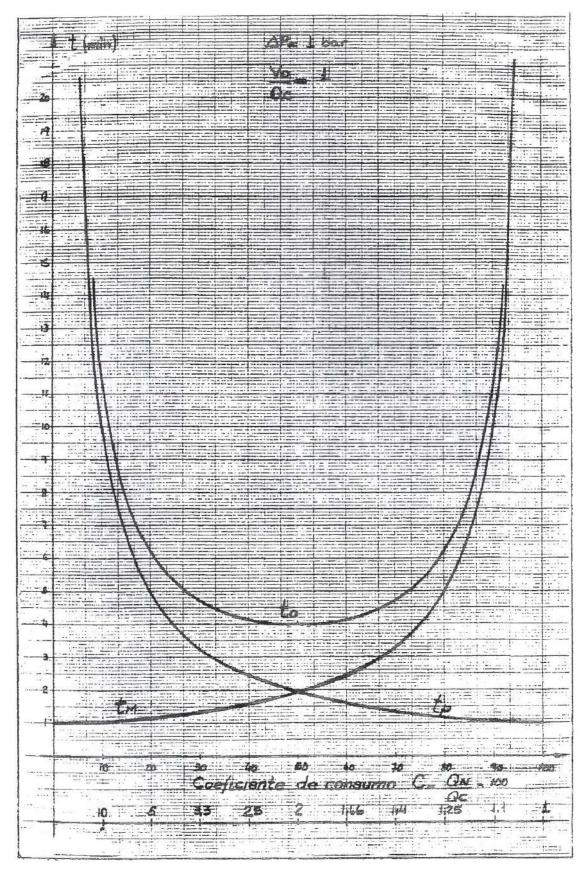


Gráfico 2.1 – tiempos de operación por hora/tiempo de marcha/coeficiente de consumo

2.3.5 Cálculo del condensado del tanque pulmón

Para el cálculo del condensado en el tanque pulmón se utiliza la Ecuación:

$$C = 7.2 * 10^{-4} * G * \varphi * (X_{Si} - X_{Sf})$$

Ecuación 2.4 – Cálculo del condensado del tanque pulmón

Donde

- Ces el condensado en el tanque pulmón (I/h)
- G es el caudal nominal aspirado por el compresor (Nm3/h)
- φ es el porcentaje de servicio en carga del compresor (%)
- X_{si} es la humedad absoluta del aire aspirado (gr/kg de aire seco)
- X_{sf} es la humedad absoluta del aire comprimido (gr/kg de aire seco)

Del compresor se sabe que $G=1.5\frac{Nm^3}{h}$ y $\varphi=0.88$

La humedad relativa se obtiene del grafico 2.2:

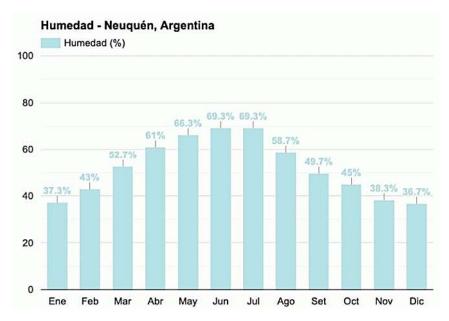


Gráfico 2.2 – Humedad relativa anual de la ciudad de Neuquén

Para obtener los valores de la humedad absoluta del aire aspirado (X_{si}) y la humedad absoluta del aire comprimido (X_{sf}) se utiliza el Gráfico 2.3, en el cual el eje horizontal indica la presión efectiva (en kg/cm²), en el eje vertical se indican las humedades de saturación del aire seco (en gr/kg de aire seco) y las distintas pendientes representan la temperatura del ambiente.

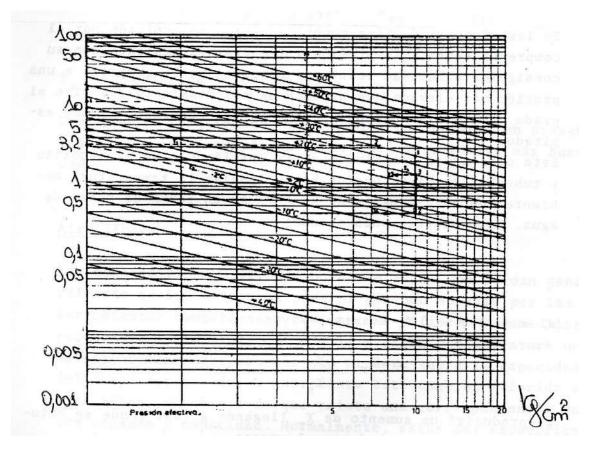


Gráfico 2.3 – Presión efectiva/Humedades de saturación/temperatura ambiente

Para la presión atmosférica (1bar=1 kg/cm2) y a temperatura ambiente 20 °C, se obtiene:

$$X_s = 15 \frac{gr}{kg \ aire \ seco}$$

Teniendo en cuenta el porcentaje de servicio del compresor (88%) se obtiene:

$$X_{si} = 0.88 * 15 \frac{gr}{kg \text{ aire seco}} = 13.2$$

Para la presión de servicio (8 bar=8kg/cm2) y a temperatura ambiente 20 °C, se obtiene:

$$X_{sf} = 1.5 \frac{gr}{kg \ aire \ seco}$$

Finalmente:

$$C = 7.2 * 10^{-4} * G * \varphi * (X_{si} - X_{sf})$$

$$C = 7.2 * 10^{-4} * 1.5 * 88 * (13.2 - 1.5)$$

$$C = 1.11 \ l/hora$$

Con lo cual, para una jornada laboral de 8 horas diarias, el condensado total en el tanque pulmón será de 8.88 litros diarios.

2.3.6 Cálculo de cañerías

Como primera medida, es necesario clasificar las cañerías, se pueden considerar 3 tipos de Cañería

- 1. <u>Cañería principal</u>: es aquella que ale del depósito y conduce la totalidad del caudal de aire comprimido. Su velocidad máxima admisible es de 8 m/s.
- 2. <u>Cañería secundaria</u>: son aquellas que derivan de la principal y se distribuyen por las áreas de trabajo de la cual se desprenden las cañerías de servicio. Su velocidad máxima es de 10 a 15 m/s
- 3. <u>Cañerías de servicio</u>: se desprenden de las cañerías secundarias y son las que alimentan a los equipos neumáticos, velocidad máxima de 15 a 20 m/s

Para su cálculo será necesario tener en cuenta:

- 1. La presión de servicio
- 2. El caudal en Nm3/min
- 3. Las pérdidas de carga, no deben ser mayores al 3% de la presión de servicio del compresor

La pérdida de carga se origina de dos maneras

- 1. **Perdida de carga en tramos rectos** producida por el rozamiento del aire comprimido contra las paredes del tubo.
- 2. Pérdidas de carga en accesorios producida en curvas, T, válvulas, etc. De la cañería.

De cada tramo se tienen los siguientes datos

- Perdida de carga (ΔP): asignado pérdidas de carga elevadas en las cañerías principales, pérdidas de carga medias en cañerías secundarias y pérdidas de carga bajas en las cañerías de servicio, con la premisa de minimizar los diámetros de las cañerías principales y secundarias, con el fin de economizar en materiales.
- Longitud (sin accesorios): es la longitud de diseño mostrada en el plano

Con estos datos se calcula la pérdida de carga por unidad de longitud utilizando la Ecuación 2.5:

$$Leq = \frac{\Delta P}{Lparcial}$$

Ecuación 2.5 – Perdida de carga por unidad de longitud

En primera medida obtiene un diámetro aproximado de cada tramo de la cañería, utilizando el Gráfico 2.4, donde el eje vertical izquierdo indica el diámetro a calcular en pulgadas, el eje horizontal inferior indica la caída de presión en kg/cm2, el eje horizontal superior indica la presión de trabajo(manométrica) en kg/cm2 y las líneas oblicuas del grafico indican el caudal de aire libre en m3/min.

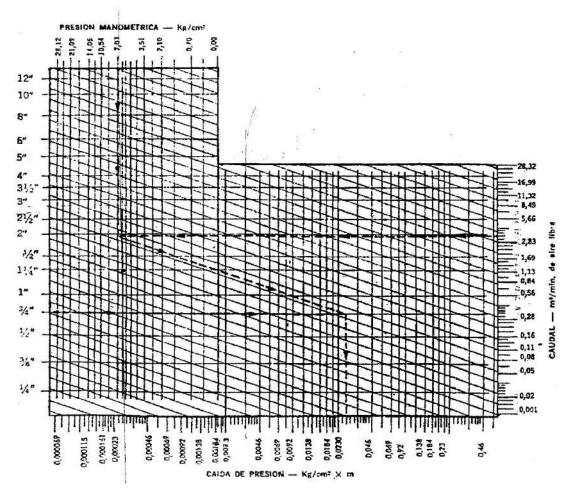


Gráfico 2.4- Caudal / Caída de presión / Presión de servicio / Diámetro de la cañería

En el Gráfico 2.4, se trazan dos rectas, una con la presión de trabajo y otra con el caudal de aire libre, dando lugar al punto de intersección (A), en este punto se traza una paralela a las líneas oblicuas hasta interceptarla con el valor correspondiente de perdida de carga por unidad de longitud, dando lugar al punto de intersección (B), proyectando una recta horizontal en este punto, se obtiene el diámetro aproximado de cada tramo de la cañería.

Con el diámetro aproximado, se obtienen las longitudes equivalentes de los accesorios, utilizando la Tabla 2.19:

Elemento	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
Válvula esclusa abierta	0.1	0.13	0.17	0.22	0.26	0.33
T paso recto	0.21	0.33	0.45	0.54	0.67	0.91
T paso a Derivación	1	1.28	1.81	2.13	2.46	3.16
Curva a 90	0.52	0.64	0.79	1.06	1.24	1.58
Curva a 45	0.23	0.23	0.37	0.48	0.57	0.73
Válvula Globo abierta	5.68	7.04	8.96	11.76	13.77	17.67
Válvula angular abierta	2.83	3.5	4.48	5.88	6.88	8.83

Tabla 2.19 – longitud equivalente de distintos accesorios

Una vez obtenidas las longitudes equivalentes por accesorio, se obtiene una longitud total por tramo sumando la longitud del tramo y sus longitudes equivalentes por accesorio, como indica la Ecuación 2.6:

Ltotal = Lparcial + Laccesorios

Ecuación 2.6 – longitud total por tramo

Con la nueva longitud total se vuelve a calcular la perdida de carga por unidad de longitud, y se repite el procedimiento de selección utilizando el Gráfico 2.4, obteniendo el diámetro definitivo de cada tramo.

En la Tabla 2.20 se resumen las longitudes con accesorios de cada tramo:

Tramo	Longitud sin accesorios	Codos	Tees	Válvulas Exclusa Abiertas	Válvulas de globo	Longitud con accesorios
Principal	7	2	0	1	0	8.75
01	9.5	0	2	0	0	12.06
06	25	1	5	0	0	32.04
C1	3	2	1	0	1	5.04
C2	3	2	1	0	1	5.04
C3	3	2	1	0	1	5.04
C4	3	2	1	0	1	5.04
C 5	3	2	1	0	1	5.04
C6	3	2	1	0	1	5.04

Tabla 2.20 – longitudes finales de cada tramo

Los cálculos de los diámetros de los distintos tramos de la cañería, se resumen en la Tabla 2.21:

Tramo	Longitud	Pérdida de carga dispuesta	Caída de presión por metro	Diámetro tentativo	Longitud con accesorios	Caída de presión por metro	Diámetro final
	[m]	[%] [kg/	[kg/cm ²]*m	pulgadas	m	[kg/cm²]*m	pulgadas
Principal	7.0	0.250	0.0023	3/4	8.750	0.00180	1
01	9.5	0.250	0.0017	1/2	12.060	0.00131	3/4
06	25.0	1.500	0.0038	1/2	32.040	0.00295	3/4
C1	3.0	0.167	0.0035	3/8	5.140	0.00208	1/2
C2	3.0	0.167	0.0035	3/8	5.140	0.00208	1/2
С3	3.0	0.167	0.0035	3/8	5.140	0.00208	1/2
C4	3.0	0.167	0.0035	3/8	5.140	0.00208	1/2
C 5	3.0	0.167	0.0035	3/8	5.140	0.00208	1/2
C6	3.0	0.167	0.0035	3/8	5.140	0.00208	1/2

Tabla 2.21 – diámetro final de cada tramo

2.3.7 Selección de la unidad FRL

2.3.7.1 Unidad FRL

Las unidades F.R.L están compuestas por un filtro, un regulador de presión (con o sin manómetro) y un lubricador, y constituyen una unidad indispensable para el correcto funcionamiento de un circuito neumático. Se instalan en el circuito y suministran aire seco, limpio, lubricado y regulado a la presión requerida.

2.3.7.2 Consideraciones para la elección de un FRL

- 1. Se seleccionan en función del caudal
- La presión de alimentación no deberá superar las presiones especificadas por los fabricantes
- 3. La instalación de los conjuntos FRL introduce una pérdida de carga que es necesario considerar, esta está en función de la presión de entrada y el caudal circulante.
- 4. Se debe utilizar aceites recomendados por el fabricante
- 5. Se instalarán lo más cerca posible de los organiza neumáticos a utilizar
- 6. Los vasos del filtro y lubricador deben limpiarse siempre con derivados de petróleo (nafta, etc.), nunca deberá usarse tricloro etileno o tetracloruro de carbono, pues son nocivos para el filtro.

Los F.R.L seleccionados son del fabricante FESTO, modelo MSB6-1/2, con conexión roscada de ½ pulgada, caudal normal 3700 l/min, presión máxima de 12 bar y filtro de 40 μ m. El modelo se detalla en la memoria técnica.

2.3.8 Verificación de la presión de trabajo de las cañerías

2.3.8.1 Verificación según código ASME

A continuación, se realiza la verificación por el código ASME, mediante la Ecuación 2.7:

$$P_{t} = \frac{2 * \sigma_{adm} * E * (t - c)}{D_{ext} - 2 * Y * (t - c)}$$

Ecuación 2.7 – Verificación según código ASME

Dónde:

- P_t: Presión de trabajo admisible (kg/cm2)
- σ_{adm} : Tensión admisible del material a la temperatura de trabajo (kg/cm2)
- E: Eficiencia de la soldadura
- t: Espesor mínimo del caño (mm)
- c: Constante por corrosión (mm)
- D_{ext} : Diámetro exterior del caño (mm)
- Y: Constante en función del material y la temperatura

La presión de trabajo debe ser inferior a la presión nominal que soporta el caño.

De la Tabla 2.22 se obtienen σ_{adm} , t , D_{ext} :

					Temperatura (°C)				
Diámetro nominal	Schedule	Diámetro exterior	Espesor	Diámetro interior	-30 a 340	341 a 370	371 a 400	400 a 410	
(pulgadas)	Scriedule	(mm)	(mm)	(mm)	Tensi	ón de tra	abajo (kg	g/cm²)	
(paigadas)		()		()	860	832	764	700	
					-30 a 341 a 371 a 400 Tensión de trabajo (kg/860 832 764 Presión máxima de tral (kg/cm²) 78 62 60 55 84 139 133 122 76 222 216 198 38 473 459 421 96 56 54 50 88 119 115 106 58 236 230 202 06 391 380 349 64 68 66 60 32 125 122 112 .7 218 212 195 4 375 364 335 82 61 59 54	abajo			
	40	21.3	2.76	15.78	62	60	55	51	
4 /2"	80	21.3	3.73	13.84	139	133	122	112	
1/2"	160	21.3	4.77	11.76	222	216	198	182	
		21.3	7.46	6.38	473	459	421	388	
	40	26.7	2.87	20.96	56	54	50	46	
2/4"	80	26.7	3.91	18.88	119	115	106	98	
3/4"	160	26.7	5.56	15.58	236	230	202	186	
		26.7	7.82	11.06	391	380	349	321	
	40	33.4	3.38	26.64	68	66	60	55	
1"	80	33.4	4.54	24.32	125	122	112	103	
T	160	33.4	6.35	20.7	218	212	195	179	
		33.4	9.7	14	375	364	335	308	
	40	42.2	3.56	34.82	61	59	54	50	
1 1/4"	80	42.2	4.85	32.04	109	106	97	90	
1 1/4	160	42.2	6.35	27.92	169	164	151	139	
		42.2	9.7	21.88	315	305	280	258	

Tabla 2.22 – características de las cañerías

De la Tabla 2.23se obtiene *E*:

Eficiencia de la soldadura	Condición
1	Caño sin costura o caño con costura y soldadura radiografiada
0,7 a 0,8	Caño con costura, soldadura no radiografiada

Tabla 2.23 – Eficiencia de la soldadura

Considerando que la soldadura no está radiografiada se toma:

$$E = 0.7$$

De la Tabla 2.24 se obtiene la constante de corrosión C

Diámetro del caño (pulgadas)	C (mm)
½ a 3 ½	1.65
Mayor que 4"	

Tabla 2.24 – Constante de corrosión

Debido a que los caños utilizados están en el intervalo de ½ a 3 ½, se obtiene que:

$$C = 1,65$$

Los valores de Y se obtienen de la Tabla 2.25:

Material	450°C	510°C	540°C
Ferrosos	0,4	0,5	0,7
Aleación	0,4	0,4	0,4

Tabla 2.25 – constante Y en función del material y la temperatura

Debido a que es un material ferroso y la temperatura de trabajo no supera los 450 °C, se tiene que:

$$Y = 0.4$$

Las verificaciones de las presiones por código ASME de cada tramo se resumen en la Tabla 2.26:

Diámetro	Eficiencia de la soldadura (E)	Constante por corrosión (C)	Constante de temperatura (Y)	Diámetro exterior (mm)	Espesor (SH40) (mm)	Diámetro Interior (mm)	Sigma admisible material (kg/cm2)	Presión máxima (kg/cm2)
1	0.7	1.65	0.4	33.4	3.38	26.64	860	65.06
1	0.7	1.65	0.4	33.4	3.38	26.64	860	65.06
3/4	0.7	1.65	0.4	26.7	2.87	20.96	860	57.10
3/4	0.7	1.65	0.4	26.7	2.87	20.96	860	57.10
1/2	0.7	1.65	0.4	21.3	2.76	15.78	860	65.47
1/2	0.7	1.65	0.4	21.3	2.76	15.78	860	65.47
1/2	0.7	1.65	0.4	21.3	2.76	15.78	860	65.47
1/2	0.7	1.65	0.4	21.3	2.76	15.78	860	65.47
1/2	0.7	1.65	0.4	21.3	2.76	15.78	860	65.47
1/2	0.7	1.65	0.4	21.3	2.76	15.78	860	65.47

Tabla 2.26 – Verificaciones por código ASME

2.3.8.2 Verificación por Schedule

El Schedule de un caño es un numero adimensional que representa el espesor de un caño, este es dato y esta tabulado según normas ASA o ANSI según corresponda, en este caso utiliza según norma ANSI.

Para el cálculo del Schedule se utiliza la Ecuación 2.8:

$$SH = 1000 * \frac{P_i}{\sigma_{adm}}$$

Ecuación 2.8 – Cálculo de Schedule

Donde

- SH es el Schedule, numero adimensional otorgado por el fabricante según norma
- 1000 = constante
- σ_{adm} = tensión admisible del material a la temperatura del ensayo (kg/cm2)
- Pi = presión interna de trabajo (kg/cm2)

Todos los tramos de la cañería son de acero ASTM 53 Grado A, Schedule 40, de la Tabla 2.22 se obtiene que, a una temperatura inferior a 400°C, la tensión sigma es de 860 kg/cm2, la presión de trabajo es de 6.3 kg/cm2.

Aplicando la Ecuación 2.8

$$SCH = 1000 * \frac{6.3}{860} = 7.32$$

El Schedule calculado es inferior al utilizado, por lo tanto, verifica.

2.3.9 Verificación de velocidad máxima de cada tramo

La velocidad máxima de cada tramo se obtiene de la Ecuación 2.9:

$$V = \frac{Q_T}{A} = \frac{4 * Q_T}{\pi * D_{in}^2}$$

Ecuación 2.9 – Velocidad máxima

Donde

- Q_T es el caudal de aire que circula por cada tramo
- A es el área
- Din es el diámetro interior de la cañería

Las verificaciones de las velocidades máximas de cada tramo se resumen en la Tabla 2.27:

Tramo	Denominación	Caudal (normal) Nm³/min	Diámetro Interior (m)	Área (m²)	Caudal (Aire Comprimido) m³/min	Velocidad (m/s)
Compresor - Pulmón	Principal	1.164	0.027	0.0005574	0.164	4.903
Pulmón - 0	Principal	1.164	0.027	0.0005574	0.164	4.903
0 - 1	Secundaria	0.299	0.021	0.0003450	0.042	2.032
0 - 6	Secundaria	0.866	0.021	0.0003450	0.122	5.895
C1	Servicio	0.119	0.016	0.0001956	0.017	1.433
C2	Servicio	0.191	0.016	0.0001956	0.027	2.294
С3	Servicio	0.119	0.016	0.0001956	0.017	1.428
C4	Servicio	0.333	0.016	0.0001956	0.047	4.000
C5	Servicio	0.112	0.016	0.0001956	0.016	1.339
C6	Servicio	0.112	0.016	0.0001956	0.016	1.339

Tabla 2.27 – Verificación de la cañería por velocidades máximas

Como se puede apreciar, todos los diámetros verifican con su velocidad máxima recomendada.

2.4 ANEXO 2 – PLANOS DE AIRE COMPRIMIDO

3 Seguridad e Higiene

3.1 Memoria Descriptiva

El siguiente capítulo del proyecto final abarca el correcto uso de la seguridad e higiene del local, haciendo un Checklist de:

- Carga Térmica
- Contaminación y riesgos químicos
- Ergonomía
- Iluminación Interior
- Incendio
- Riesgos Eléctricos
- Riesgos Mecánicos
- Ruidos y vibraciones
- Señalización de medios de escape

Se hace especial énfasis a los ítems lluminación Interior e Incendio, donde se realizaron las mediciones de niveles de iluminación, se realizaron el cálculo de carga de fuego y medios de escape para todos los sectores del taller.

Finalmente se obtiene la conclusión y se realizan propuestas y/o medidas correctivas según corresponda.

3.2 Memoria técnica

En el apartado técnico, se detallan los distintos equipos y herramientas utilizadas en el taller, identificando los posibles riesgos que existen al ser manipulados por el personal.

Posteriormente, se realiza un Checklist, con los apartados fundamentales de la asignatura: definiciones, consideraciones técnicas, conclusiones y sugerencias.

3.2.1 Equipos y herramientas

En la tabla 3.1 se determinan los equipos y herramientas del taller

Sector	Equipos y Herramientas	Tipo	
	Compresor a tornillo	Eléctrico	
	Inflador de neumático	Neumático	
	Llave de impacto 1/2	Neumático	
	Pistola Engrasadora	Neumático	
Taller	Atornillador Recto	Neumático	
	Taladro Angular	Neumático	
	Pluma	Hidráulico	
	Crique	Hidráulico	
	Tablero de Herramientas	Manual	
	Pistola de soplado	Neumático	
	Pistola de limpieza	Neumático	
Estética vehicular	Lijadora orbital	Neumático	
Estetica venicular	Herramienta oscilante	Neumático	
	Pulidora angular	Neumático	
	Aspiradora	Eléctrico	
Oficinas	Equipo informático	Eléctrico	

Tabla 3.1 – Equipos y herramientas

3.2.2 Equipos de protección personal (EPP)

Los EPP son indispensables para prevenir accidentes de trabajo y enfermedades profesionales ante la presencia de riesgos específicos que no pueden ser aislados o eliminados.

El Servicio de Higiene y Seguridad en el trabajo debe determinar la necesidad de uso de los EPP, las condiciones de utilización y vida útil. Una vez determinada la necesidad de usar un determinado EPP, su utilización debe ser obligatoria por parte del personal.

Los EPP deben ser de uso individual, no intercambiables, deben ser proporcionados a los trabajadores y utilizados por éstos. A continuación, se adjunta el formulario de entrega de ropa y equipos de protección, que el empleado debe firmar una vez recibidos, de esta forma queda registrado que equipos y cantidad retiró cada empleado, permitiendo un control para su implementación y seguimiento sobre su uso.

							Resolución 299/11, Anexo I
	ENTREGA DE ROPA DE TRABAJO Y ELEMENTOS DE PROTECCIÓN PERSONAL						ONAL
(i) Razón Social:					VSI	(2) C.U.I.T.:	
(3) Dirección: (4) Localidad:				⁽⁵⁾ C.P:	(6) Provincia:	175	
	Nombre y Apellido del Trabajador:			I:			(S)D.N.I.:
(9) Descripción breve del puesto/s de trabajo en el/los cuales se desmpeña en tra		rabaj ador:	(IV) Elementos	de protección per	rsonal, necesarios pa	ra el trabajador, según el puesto de trabajo:	
	(II) Producto	(12) Tipo // Modelo	(B) Marca	(10 Posee certificación	(15) Cantidad	(16) Fecha de entrega	(17) Firma del trabajador
				SI#NO			
1							
2							
3							
4							
5							
6							
7						_	
8							
9							
10							
11							
12							
13							
14			-				
15							
16							
17			 				
	18 (us) Información adicional:						

Tabla 3.2 – Planilla de entrega de EPP, Resolución 299/11, Anexo I

3.2.2.1 Ropa de trabajo

Permite cubrir y proteger al personal de partículas, contacto con materiales calientes y condiciones ambientales de trabajo, durante toda la jornada laboral.

Debe ser de tela flexible, que permita una fácil limpieza y desinfección y adecuada a las condiciones del puesto de trabajo. Además, se debe ajustar bien al cuerpo del trabajador, sin perjuicio de su comodidad y facilidad de movimientos. Siempre que las circunstancias lo permitan, las mangas deben ser cortas y cuando sean largas deben ajustar adecuadamente.

Imagen 3.1 – Ropa de trabajo

3.2.2.2 Protección para la cabeza

Por lo general se utilizan cascos. Estos están diseñados para absorber parte de la energía de un impacto mediante la destrucción parcial de componentes; aún en el caso en que el daño no sea evidente, todos los cascos protectores que han estado sometidos a un impacto deben ser reemplazados. Permiten proteger contra caída de objetos, golpes con objetos, contacto eléctrico y salpicaduras. Para la actividad que se desarrolla en el taller no son indispensables.

Imagen 3.2 - Protección para la cabeza

3.2.2.3 Protección ocular

Es de obligación el uso de protección ocular como antiparras, anteojos, máscaras faciales, para prevenir el ingreso de partículas, salpicaduras y radiaciones (infrarrojas, ultravioletas, etc.), que pueden causar lesiones temporales o permanentes en la visión de quienes trabajan en operaciones de lijado, pulido y armado (entre otras).

Imagen 3.3 – Protección ocular

3.2.2.4 Protección auditiva

En caso de que los niveles sonoros superen los 85 dB, es necesario emplear el uso de protección auditiva ya sea orejeras, tapones o auriculares. Los mismos deberán ser almacenados en un lugar específico y que los conserven limpios.

Imagen 3.4 - Protección auditiva

3.2.2.5 Protección de manos y brazos:

Las protecciones de manos y brazos como guantes de cuero, vinilo, polietileno u otro material, se utilizan cuando se lleven a cabo tareas que implica riesgos de corte, salpicaduras, contacto con superficies calientes, o contacto directo (por ejemplo, cuando se utiliza la amoladora o soldadora entre otras máquinas).

Imagen 3.5 – Protección de manos y brazos

3.2.2.6 Protección respiratoria

La protección respiratoria es necesaria cuando se desempeñen tareas en los puestos de trabajo, para impedir la inhalación de polvos que pueda provocar intoxicación (ejemplo en el sector de lijado y pulido de vehículos). Deben controlarse su conservación y funcionamiento como mínimo una vez al mes.

Imagen 3.6 - Protección respiratoria

3.2.3 Teléfonos útiles

En la Tabla 3.3 se especifican los teléfonos útiles en caso de emergencias

Servicios	Teléfono
Bomberos	(0299) 442 2212 / 442 5105
CALF (cooperativa eléctrica)	(0299) 443 0401
Camuzzi gas del sur (emergencias)	0810 999 0810
Comando Radioeléctrico	101
Defensa civil	(0299) 449 5117
Hospital Bouquet Roldan	(0299) 443 8181
Hospital Castro Rendón	(0299) 449 0800 / 443 4545
Hospital Heller	(0299) 449 0787
Servicio de ambulancias (SIEN)	107

Tabla 3.3 - Teléfonos útiles

3.2.4 Checklist

A continuación, se detalla un Checklist de los principales ítems de seguridad e higiene vistos en la asignatura

3.2.4.1 Carga Térmica

La carga térmica es despreciable en los sectores de oficina y sala de espera, debido a que estos ambientes están debidamente calefaccionados y refrigerados mediante equipos de aire acondicionado de frio/calor, los cuales pueden regularse para mantener el sector dentro de la zona de confort.

La carga térmica en el sector taller es desfavorable, puesto a que no cuenta con equipos de climatización y además la aislación térmica del techo es precaria. Se recomienda realizar una correcta aislación en el techo del taller y diseñar un sistema de climatización óptimo.

3.2.4.2 Contaminación y riesgos químicos

Al trabajar con distintos aceites y combustibles, para evitar exposición o contacto (ya sea por vía respiratoria, dérmica u oral) debe garantizarse que el trabajador utilice los elementos de protección personal adecuados (protección respiratoria, ocular de manos y brazos).

En el sector donde se almacenan los tambores de aceite, es aconsejable instalar un contenedor anti derrames, como el que ilustra la imagen

Imagen 3.7 - Contenedor anti derrames

Los desechos como el aceite quemado, son recolectados por una empresa recicladora. Los residuos voluminosos son depositados en conteiner provistos en distintos puestos de reciclaje municipal.

3.2.4.3 Ergonomía

Para prevenir el desarrollo de trastornos musculo esqueléticos como la tendinitis, o el desarrollo de carga y fatiga mental, entre otros problemas, causados por los movimientos repetitivos y posturas forzadas al realizar tareas cotidianas dentro del taller, se recomienda que se lleven a cabo las siguientes prácticas:

- Analizar, definir e implementar un ritmo de trabajo seguro, contemplando las características fisiológicas de los trabajadores.
- Establecer un programa de ejercicios de precalentamiento que incluya elongación y fortalecimiento de los grupos músculo-articulares utilizados en la tarea.
- Establecer entre los Servicios de Higiene y Seguridad y de Medicina del Trabajo en forma conjunta con el trabajador involucrado y su ART, procedimientos de trabajo seguro para desarrollar la tarea, contemplando evitar: movimientos que sean innecesarios, realizados en forma brusca y posturas forzadas (que sobrepasen los ángulos de confort).
- Instruir a los supervisores en el control de la ejecución de las tareas de forma segura.
- Evaluar las cargas posturales en el puesto de trabajo, en posición confortable y extrema, teniendo en cuenta la duración de las mismas.
- Rotar al personal entre puestos de trabajo, con el objeto de ejercitar diferentes grupos musculares y niveles de fuerza, para evitar su sobrecarga.
- Capacitar a los trabajadores en procedimientos de trabajo seguro y sobre las
- posturas correctas a adoptar para realizar las tareas.
- Establecer un programa de mantenimiento preventivo de las máquinas.

3.2.4.4 Iluminación Interior

Es importante considerar las fuentes lumínicas en el ambiente laboral para llevar a cabo cualquier tipo de tarea, ya que las personas que trabajan bajo una adecuada iluminación son más productivas, se concentran con mayor facilidad y evitan padecer daños como fatiga, dolores de cabeza, cuello y/o espalda a causa de mantener posturas forzadas que le permita aprovechar la baja iluminación, entre otros.

La iluminación adecuada para cada tarea depende de varios factores, partiendo de las características visuales de cada trabajador, la precisión requerida para la tarea realizada, el detalle del trabajo, la velocidad del movimiento de los objetos, el contraste, etc. De esta manera puede resultar complejo asegurar una calidad óptima para cada puesto de trabajo, pero es igualmente necesario realizar mediciones para conocer los niveles de iluminación de los puestos y así poder realizar los ajustes para lograr los niveles mínimos establecidos, según el Decreto 351/79 y la Resolución SRT No 84/11.

Una buena práctica en cuanto al confort visual es lograr que la iluminación genere la menor molestia posible y sea efectiva a los fines de las tareas a realizar, considerando la preservación de la salud. Se debe buscar:

- Eliminar los reflejos molestos, los deslumbramientos y las sombras.
- Utilizar los colores normalizados.
- Realizar un mantenimiento preventivo y correctivo del sistema de iluminación, teniendo en cuenta:

- La detección del envejecimiento de las luminarias.
- La realización correcta de la limpieza de las luminarias.
- El funcionamiento adecuado de la iluminación de emergencia.
- Asegurar una adecuada iluminación general que tenga en cuenta las variaciones debido a las condiciones de luz natural.
- Asegurar una adecuada iluminación localizada en puntos críticos donde el operario necesita precisión en sus movimientos.

En la memoria de cálculo se realiza la medición del nivel de iluminación interior del taller con sus respectivas recomendaciones.

3.2.4.5 Incendio

El incendio es el resultado de un fuego incipiente no controlado, cuyas consecuencias afectan tanto a la vida y salud, como a las condiciones estructurales del taller.

Para que se origine un incendio es necesario que estén presentes 3 elementos: combustible (madera, cartón, hidrocarburos, aceites, etc.), oxígeno y una fuente de calor. Un cuarto elemento llamado reacción en cadena, es necesario para el mantenimiento o la propagación del fuego. En el caso de que alguno de estos elementos esté ausente o su cantidad no sea suficiente, la combustión no tiene lugar o se extingue, evitando la formación o propagación del fuego.

- Las principales causas que originan un incendio son:
- Instalaciones eléctricas inadecuadas.
- Cigarrillos y fósforos.
- Almacenamiento de líquidos inflamables/combustibles.
- Falta de orden y limpieza.
- Chispas generadas por trabajos mecánicos.
- Superficies calientes.
- Calentamiento por fricción de partes móviles de maguinarias.
- Llamas abiertas.
- Residuos calientes de una combustión.
- Corte y soldadura.

Como medidas preventivas para incendios se recomienda:

- Tener en cuenta que la sección de los cables se adapte a la potencia instalada de los artefactos eléctricos a conectar, a fin de evitar sobrecargas y/o cortocircuitos.
- Apagar correctamente colillas de cigarrillos y fósforos.
- Almacenar los productos inflamables en lugares ventilados, rotulados y ubicarlos lejos de fuentes de calor.
- Evitar acumulación de residuos en áreas de trabajos para disminuir la carga de fuego.
- Capacitar para el buen manejo de equipos industriales que producen calor y quemadores portátiles.
- En trabajos de corte y soldadura mantener los locales ventilados.
- Capacitar a los operarios sobre el uso y manejo de extintores.

En caso de que, a pesar de las medidas preventivas tomadas, igual se produzca un incendio, se deben seguir los siguientes pasos:

- Ubicar el lugar de incendio y evacuar el área rápidamente.
- Llamar a los bomberos y a emergencias en caso de heridos.

- Cortar el suministro eléctrico.
- Conservar la calma y tranquilizar a las personas que estén alrededor.
- Si hay humo, taparse la nariz y la boca con un pañuelo, de preferencia mojado y agacharse.
- Dirigirse a los puntos de reunión con los demás compañeros. Ver plano de Señalización en ANEXO III.
- No utilizar extintores si no está capacitado de hacerlo y abandone el área inmediatamente.

Es de obligación la instalación de equipos extintores en el taller, conforme a lo exigido por el Decreto 351/79.

- Los mismos deben estar ubicados en lugares de fácil acceso, evitando estar entre máquinas y señalizados como corresponde. Ver plano de Señalización en ANEXO III.
- Se deben recargar una vez utilizados y se realiza de manera anual un mantenimiento.

En la memoria de cálculo se realiza la selección de los equipos extintores. En la Tabla 3.4 se especifica la cantidad necesaria de extintores:

	Extintores				
Sector	Tipo	Capacidad mínima	Cantidad mínima	Capacidad recomendada	Cantidad recomendada
Taller	Polvo Triclase	7kg	1	10kg	3
Oficina	Polvo Triclase	7 kg	1	10kg	1
Sala de espera	Polvo Triclase	7 kg	1	10kg	1
Estética vehicular	Polvo Triclase	7 kg	1	10kg	1
Taller	Polvo Triclase	7 kg	1	10kg	1

Tabla 3.4 – Extintores necesarios para cada sector del taller

La disposición de los extintores se detalla en el plano de extintores del ANEXO III.

Pasillos de circulación/salidas de emergencia:

En caso de incendio u otro siniestro que implica la necesidad de una evacuación, es necesario implementar las siguientes prácticas para impedir accidentes y preservar la salud de las personas dentro del taller:

- Mantener las zonas de paso y salidas libres de obstáculos.
- No obstruir los pasillos, escaleras, puertas o salidas de emergencia.
- Utilizar las escaleras tomándose de los pasamanos.
- En caso de incendios, usar las salidas de emergencias.

A su vez, los medios de escape deberán cumplimentar lo exigido en el artículo N° 172 del Decreto 351/79:

- El trayecto a través de los mismos deberá realizarse por pasos comunes libres de obstrucciones y no estará entorpecido por locales o lugares de uso o destino diferenciado.
- Donde los medios de escape puedan ser confundidos, se colocarán señales que indiquen la salida.

- Ninguna puerta, vestíbulo, corredor, pasaje, escalera u otro medio de escape, será obstruido o reducido en el ancho reglamentario. La amplitud de los medios de escape, se calculará de modo que permita evacuar simultáneamente los distintos locales que desembocan en él.
- Cuando un edificio o parte de él incluya usos diferentes, cada uso tendrá medios independientes de escape, siempre que no haya incompatibilidad a juicio de la autoridad competente, para admitir un medio único de escape calculado en forma acumulativa.
- Las puertas que comuniquen con un medio de escape abrirán de forma tal que no reduzcan el ancho del mismo y serán de doble contacto y cierre automático. Su resistencia al fuego será del mismo rango que la del sector más comprometido.

En la memoria de cálculo se detalla el cálculo de los medios de escape. Estos se resumen en la Tabla 3.5:

Sector	Puertas	Ancho (m)
Oficinas	1	1
Recepción	1	1.4
Taller y estética vehicular	1	3.4

Tabla 3.5 – Medios de escape

3.2.4.6 Riesgos Eléctricos

Siempre que se esté trabajando con máquinas eléctricas se debe garantizar mínimamente:

- No intervenir, reparar o inspeccionar los tableros eléctricos sin autorización y conocimiento de la tarea.
- No utilizar adaptadores de toma corrientes para no recargar la línea ni eliminar la protección de la descarga a tierra.
- No tirar de los cables al desenchufar los tomacorrientes.
- Revisar periódicamente que los cables no posean defectos en la aislación ni en los tomacorrientes. Si se detectase alguna anomalía no utilizar los mismos e informar a su supervisor.
- Evitar dejar cables eléctricos de alimentación y alargues sobre el piso y colocarlos en altura mediante tendido aéreo.
- Bloquear/consignar de forma segura las máquinas, equipos y herramientas en operaciones de mantenimiento, reparación, ajustes, revisiones y preparación.
- No trabajar sobre superficies de piso mojadas o húmedas.
- Asegurar que las instalaciones eléctricas cuenten con eficiente sistema de puesta a tierra y continuidad de las masas conductoras, llaves termomagnéticas, interruptores diferenciales acorde a la potencia, tableros ignífugos, toma corrientes monofásicos y trifásicos normalizados.
- Mantener los tableros eléctricos cerrados para las personas no autorizadas y señalizar el riesgo.
- Efectuar mediciones periódicas del valor de la puesta a tierra, de la continuidad de las masas conductoras y controlar funcionamiento de interruptores diferenciales.
- El trabajo de mantenimiento debe conservar los equipos según su diseño y ser efectuado por personal calificado.
- Utilizar equipos que cumplan con normas y reglamentaciones electromecánicas.

- Utilizar equipos de protección personal como botines con suelas de goma y guantes de cuero.
- Colocar obstáculos de protección fijados de manera segura, que impida el contacto accidental con las partes activas de la instalación.

Los factores que influyen en el accidente eléctrico son:

- Intensidad de la corriente.
- Duración del contacto eléctrico.
- Impedancia del cuerpo.
- Tensión aplicada.
- Frecuencia de la corriente.

Es de suma importancia adoptar las medidas preventivas mencionadas anteriormente, ya que las lesiones producidas por la corriente eléctrica pueden causar asfixia, fibrilación ventricular, tetanización muscular, quemaduras y bloqueo renal.

Consideraciones particulares

En el sector taller y estética vehicular, el cableado eléctrico se encuentra expuesto, sin canalizar, y las secciones no son las óptimas.

En el tablero principal, la térmica tetrapolar está conformada por dos térmicas, una térmica tripolar y otra unipolar para el neutro. Esto debe ser corregido para evitar incidentes eléctricos.

El tablero seccional no está seccionado como indica la reglamentación vigente de la AEA, esto será corregido y explicado correctamente en el capítulo 4 de este proyecto.

Las tensiones de trabajo de los operarios se consideran seguras, puesto que la alimentación de los automóviles esta provista por baterías de 12V, la cual se considera una tensión segura.

3.2.4.7 Riesgos Mecánicos

Se entiende como riesgo mecánico al conjunto de factores físicos que pueden dar lugar a una lesión por acción mecánica de elementos de máquinas, herramientas, piezas a trabajar o materiales proyectados. Los riesgos mecánicos posibles dentro de la industria involucran golpes, cortes y proyección de materiales. Los mismos se encuentran presentes en las tareas de manipulación de materiales y/o cargas, corte e inspección y control general.

Como medidas de prevención de GOLPES, se detalla la siguiente lista de buenas prácticas a tener en cuenta:

- Ubicar las máquinas y disponer de un espacio de trabajo, de modo tal que la separación entre éstas sea la suficiente para que el movimiento de materiales se realice en forma segura.
- Delimitar las áreas de trabajo, de almacenamiento y de circulación peatonal y respetar la señalización.
- Ubicar en forma ordenada los contenedores de los distintos materiales sin invadir las demarcaciones efectuadas, realizando revisiones periódicas frecuentes para corregir desvíos.
- Mantener ordenada y limpia el área del puesto de trabajo, prestando especial atención a productos como aceites, grasas y otros que pudieran ocasionar resbalones o caídas.

Evitar depositar, acopiar materiales, máquinas u otros elementos en zonas de circulación.

- Delimitar la zona de carga, descarga y movimiento de materiales a fin de evitar daños a terceros y prohibir el ingreso de los mismos a esas zonas durante el desarrollo de las actividades.
- Proteger y señalizar partes salientes de estructuras y piezas que pudieran generar daños al trabajador.
- Capacitar al personal que efectúa en forma manual y mecánica, operaciones de carga, descarga y movimiento de materiales, en técnicas correctas y con procedimientos de trabajo escrito. Registrar la actividad de capacitación.
- Proveer a los trabajadores los EPP necesarios, como botines, guantes, protección ocular y respiratoria, etc.

Para prevenir accidentes de CORTES o lastimaduras se recomienda:

- Instalar protección colectiva, como resguardo de las máquinas, que protejan al trabajador sin necesidad de que realicen ningún tipo de operación.
- Asegurar el uso de herramientas manuales que posean mangos adecuados, libres de roturas, ataduras y reparaciones "caseras" que afecten la seguridad.
- Mantener limpias las distintas partes de las máquinas, elementos y piezas a elaborar a fin de evitar que se resbalen y provoquen algún accidente al trabajador.
- Utilizar implementos o herramientas manuales (pinzas, bastones magnéticos, ganchos metálicos) al manipular piezas pequeñas a fin de evitar el contacto con partes filosas y/o que se acerque las manos a la hoja de corte.
- Prestar especial atención a las zonas de formación de rebabas, filos y recortes en las piezas a fin de evitar cortes.
- Utilizar guantes para evitar cortes por contacto con partes metálicas filosas en las manos.

<u>Finalmente, como buenas prácticas para impedir PROYECCIÓN DE MATERIALES en los ojos, se</u> recomienda:

- Colocar protección mecánica al disco o piedra de amolar y mantenerla en condiciones adecuadas.
- Utilizar protección ocular de cara completa o anteojos de seguridad con protección lateral.
- Capacitar y controlar en forma diaria el adecuado uso, mantenimiento y disposición de la protección ocular.
- Tomar especial precaución al utilizar cepillos de alambre rotativos ya que las cerdas de los mismos pueden proyectarse y dañar a los trabajadores.

3.2.4.8 Ruidos y vibraciones

3.2.4.8.1 Ruido

El ruido es un sonido es un sonido no deseado y se encuentra presente en todos los sectores del taller. Dependiendo de su intensidad y tiempo de exposición puede llegar a alcanzar niveles sonoros potencialmente nocivos para la audición y perjudiciales para la salud de los trabajadores.

Los trabajadores no suelen percibir la pérdida auditiva hasta que son afectadas las frecuencias conversacionales, lo que perjudica su relación interpersonal y para ese momento, la perdida es irrecuperable. Previo a esta situación, que en terminología medica se denomina hipoacusia inducida por el ruido, los trabajadores pueden presentar deterioro en su salud general, con síntomas inespecíficos, tales como trastornos del sueño y digestivos, irritabilidad, cansancio y déficit de atención entre otros, para luego acentuarse con zumbidos y vértigo.

Al igual que en otras clases de exposición, la mejor manera de evitar el riesgo es eliminarlo. Para reducir y/o eliminar el ruido, se pueden seguir las siguientes recomendaciones:

- Emplear máquinas y métodos que por su innovación tecnología sean lo menos ruidosas posibles.
- Colocar las máquinas que vibran sobre materiales amortiguadores
- Aumentar la distancia entre el operario y la fuente sonora
- Utilizar sistemas de ventilación, que sean lo menos ruidosos posible
- Realizar mantenimiento y lubricación periódica de los equipos
- Colocar barreras para separar o aislar las piezas de máquinas o máquinas que sean particularmente ruidosas

En cuanto al nivel de intensidad del ruido se analiza de la siguiente forma:

Si los niveles de ruido son inferiores a los 85 dB(A), solo se realizan nuevos relevamientos para controlar que el nivel medido se mantenga y detectar cambios a causa de la posible incorporación de nuevos equipos o maquinarias, sistemas de ventilación, falta de mantenimiento, etc.

Si los niveles obtenidos son superiores a los 85 dB(A), se exige implementar obligatoriamente el uso de protectores auditivos y cuando sea posible actuar sobre la fuente sonora, implementando alguna de las medidas enunciadas anteriormente.

Si los niveles son superiores a los 135 dB(A), no se permite el trabajo aun utilizando protectores auditivos.

En la Tabla 3.6 se detallan las herramientas con un nivel de presión sonora (NPS) superior a 85 dB(A)

Sector	Equipos y Herramientas	NPS (dB)
	Llave de impacto 1/2	87
	Llave de impacto 3/8	92.1
Taller	Pistola Engrasadora	90
	Atornillador Recto	96.7
	Taladro Angular	97.5
Estética vehicular	Pistola de soplado	90
	Pistola de limpieza	85
	Lijadora orbital	60
	Aspiradora	85

Tabla 3.6 – niveles sonoros superiores a 85 dBA de distintos equipos y herramientas

Nota: en el sector oficinas y sala de espera no se registran fuentes de sonido fuera del rango permitido.

3.2.4.8.2 Vibraciones

Las vibraciones están presentes en las tareas que emplean en herramientas de mango, como por ejemplo amoladora y taladro, estas vibraciones afectan las extremidades superiores. Uno de los factores determinantes de la acción en el cuerpo es la frecuencia.

Para reducir al máximo las vibraciones que se transmiten a las extremidades superiores (manobrazo), se detallan en la siguiente lista algunas prácticas que pueden aplicarse:

- Seleccionar herramientas cuyo diseño lleve al mínimo la exposición a vibraciones (ejemplo mangos con muelles anti vibratorios)
- Mantener en condiciones los mangos de las herramientas
- Mantener las herramientas bien balanceadas
- Implementar un procedimiento de pausas periódicas y de ser posible, rotar con tareas que no impliquen la exposición a vibraciones
- Utilizar elementos de protección personal (EPP), en este caso guantes y botas de protección para atenuar las vibraciones
- Capacitar al personal sobre los riesgos que generan las vibraciones en el cuerpo y las medidas preventivas para evitar y/o minimizar la exposición

3.2.4.9 Señalización de medios de escape

Actualmente los medios de escape están señalizados, solo resta colocar un cartel luminoso a batería que indique la salida.

3.3 Memoria de cálculo

3.3.1 Iluminación Interior

El siguiente apartado del proyecto, consiste en realizar un relevamiento del nivel de iluminación del taller, verificando que las mediciones resultantes cumplen con el Decreto 351/79, verificando que cumpla con las condiciones de intensidad media y uniformidad de la iluminancia.

3.3.1.1 Medición

El método de medición que frecuentemente se utiliza, es una técnica de estudio fundamentada en una cuadrícula de puntos de medición que cubre toda la zona analizada. La base de esta técnica es la división del interior en varias áreas iguales, cada una de ellas idealmente cuadrada. Se mide la iluminancia existente en el centro de cada área a la altura de 0.8 metros sobre el nivel del suelo y se calcula un valor medio de iluminancia. En la precisión de la iluminancia media influye el número de puntos de medición utilizados. Existe una relación que permite calcular el número mínimos de puntos de medición a partir del valor del índice de local aplicable al interior analizado. El índice del local se calcula mediante la Ecuación 3.1:

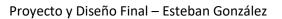
$$\text{Indice de local} = \frac{Largo \times Ancho}{\text{Altura de Montaje x (Largo + Ancho)}}$$

Ecuación 3.1 - Índice de local

Aquí el largo y el ancho, son las dimensiones del recinto y la altura de montaje es la distancia vertical entre el centro de la fuente de luz y el plano de trabajo. La relación mencionada se expresa mediante la Ecuación 3.2:

Número mínimo de puntos de medición = $(x + 2)^2$

Ecuación 3.2 – Número mínimo de puntos de medición


Donde "x" es el valor del índice de local redondeado al entero superior, excepto para todos los valores de "Índice del local" iguales o mayores que 3, el valor de x es 4.

Una vez que se obtuvo el número mínimo de puntos de medición, se procede a tomar los valores en el centro de cada área de la grilla. Cuando el recinto donde se realizará la medición posea una forma irregular, se deberá en lo posible dividir en sectores cuadrados o rectángulos. Luego se debe obtener la iluminancia media (E Media), que es el promedio de los valores obtenidos en la medición, utilizando la Ecuación 3.3:

$$EMedia = \frac{\sum Valores\ Medidos\ (lux)}{Cantidad\ de\ puntos\ medidos}$$

Ecuación 3.3 – Iluminancia media



Una vez obtenida la iluminancia media, se procede a verificar el resultado según lo requiere el Decreto 351/79 en su Anexo IV, en su tabla 1(Tabla 3.7) y 2(Tabla 3.8), según el tipo de edificio, local y tarea visual.

Clase de tarea visual	Iluminación sobre el plano de trabajo (lux)	Ejemplos de tareas visuales
Visión ocasional solamente	100	Para permitir movimientos seguros por ej. En lugares de poco tránsito: Sala de calderas, depósito de materiales voluminosos y otros.
Tareas intermitentes ordinarias y fáciles, con contrastes fuertes.	100 a 300	Trabajos simples, intermitentes y mecánicos, inspección general y contado de partes de stock, colocación de maquinaria pesada.
Tarea moderadamente crítica y prolongadas, con detalles medianos	300 a 750	Trabajos medianos, mecánicos y manuales, inspección y montaje; trabajos comunes de oficina, tales como: lectura, escritura y archivo.
Tareas severas y prolongadas y de poco contraste	750 a 1500	Trabajos finos, mecánicos y manuales, montajes e inspección; pintura extrafina, sopleteado, costura de ropa oscura.
Tareas muy severas y prolongadas, con detalles minuciosos o muy poco contraste	1500 a 3000	Montaje e inspección de mecanismos delicados, fabricación de herramientas y matrices; inspección con calibrador, trabajo de molienda fina.
Tareas excepcionales, difíciles o importantes	5000 a 10000	Casos especiales, como, por ejemplo: iluminación del campo operatorio en una sala de cirugía.

Tabla 3.7 - Intensidad mínima de iluminación (Basada en norma IRAM-AADL J 20-06) (Tabla 1)

Sector	Actividad	Valores
	Depósito de materiales	100
	Trabajo grueso: contar, control grueso de objetos de depósito y otros	300
	Trabajo mediano: ensamble previo	600
Mecánica general	Trabajo fino: dispositivos de calibración, mecánica de precisión, instrumentos	1200
	Trabajo muy fino: calibración e inspección de piezas de montaje pequeñas	2000
	Trabajo minucioso: instrumentos muy pequeños	3000
	Preparación de los elementos	400
	Preparación, dosaje y mezcla de colores	1000
Pintura	Cabina de pulverización	400
	Pulido y terminación	600
	Inspección y retoque	600
	Halls para el público	200
Oficinas	Contaduría, tabulaciones, teneduría de libros, operaciones etc.	500
	Trabajo general de oficinas	500
	Trabajos especiales de oficina (computación de datos)	750

Tabla 3.8 - Intensidad mínima de iluminación (Basada en norma IRAM-AADL J 20-06) (Tabla 2)

Una vez obtenida la iluminancia media, se procede a verificar la uniformidad de la iluminancia, según lo requiere el Decreto 351/79 en su Anexo IV, mediante la Ecuación 3.4:

$$EMinima \ge \frac{E\ Media}{2}$$

Ecuación 3.4 – Uniformidad de iluminancia

Donde la iluminancia Mínima (E Mínima), es el menor valor detectado en la medición y la iluminancia media (E Media) es el promedio de los valores obtenidos en la medición.

Si se cumple con la relación, indica que la uniformidad de la iluminación está dentro de lo exigido en la legislación vigente.

La Tabla 3.9 (tabla 4, del Anexo IV, del Decreto 351/79), indica la relación que debe existir entre la iluminación localizada y la iluminación general mínima:

Iluminación general mínima (en función de la iluminación localizada)		
Localizada (lx)	General (lx)	
250	125	
500	250	
1000	300	
2500	500	
5000	600	
10000	700	

Tabla 3.9 – iluminación general mínima

Esto indica que, si en el puesto de trabajo existe una iluminación localizada de 500lx, la iluminación general deberá ser de 250lx, para evitar problemas de adaptación del ojo y provocar accidentes.

Sector Taller

Este sector cuenta con una superficie de trabajo de 10 metros de ancho por 26 metros de largo. Se calcula el índice de local:

Índice del local =
$$\frac{(10m)*(26m)}{(3m)*(10m+26m)} = 2.41 m$$

Número mínimo de puntos de medición = $(2.41 + 2)^2 = 19.42$

Se realizaron 24 mediciones:

100	90	90	90
110	120	110	90
128	130	110	70
115	85	100	80
120	80	210	80
150	95	200	160

$$\sum$$
 Valores Medidos = 2713 Lux

$$E_{media} = \frac{2713 \ Lux}{24} = 113.04 \ Lux$$

Según lo requiere el Decreto 351/79 en su Anexo IV en nuestro caso la iluminancia media debe rondar entre 300 a 600 (lux) por lo tanto **no cumple** con la normativa.

Se procede a verificar la uniformidad de la iluminancia

$$E_{minima} = 70 Lux$$

$$E_{minima} \ge \frac{E_{media}}{2} \rightarrow 70 \text{ lux } \ge 56.52$$

Por lo tanto, cumple con la normativa.

Sector Estética Vehicular

Este sector cuenta con una superficie de trabajo de 10 metros de ancho por 5 metros de largo Se calcula el índice de local:

Índice del local =
$$\frac{(10m)*(5m)}{(3m)*(10m+5m)} = 1.11 m$$

Número mínimo de puntos de medición = $(1.11 + 2)^2 = 9.67$

Se realizaron 12 mediciones:

230	270	225	210
190	200	220	220
160	180	190	160

$$\sum Valores\ Medidos = 2510\ Lux$$

$$E_{media} = \frac{2510 \ Lux}{12} = 209.16 \ Lux$$

Según lo requiere el Decreto 351/79 en su Anexo IV en nuestro caso la iluminancia media debe rondar entre 400 a 600 (Lux) por lo tanto **no cumple** con la normativa.

Se procede a verificar la uniformidad de la iluminancia:

$$E_{minima} = 180 Lux$$

$$E_{minima} \, \geq \, \frac{E_{media}}{2} \rightarrow 180 \; \mathrm{lux} \, \geq 104.58$$

Por lo tanto, cumple con la normativa.

Sector Oficina

Este sector cuenta con una superficie de 4.5 metros de ancho por 3.5 metros de largo Se calcula el índice de local:

Índice del local =
$$\frac{(4.5m)*(3.5m)}{(3m)*(4.5m+3.5m)} = 0.66 m$$

Número mínimo de puntos de medición = $(0.66 + 2)^2 = 7.07$

Se realizaron 9 mediciones:

120	100	90
110	100	120
110	110	90

$$\sum$$
 Valores Medidos = 950 Lux

$$E_{media} = \frac{950 Lux}{9} = 105.55 Lux$$

Según lo requiere el Decreto 351/79 en su Anexo IV en nuestro caso la iluminancia media debe rondar entre 400 a 600 (lux) por lo tanto **no cumple** con la normativa.

Se procede a verificar la uniformidad de la iluminancia:

$$E_{minima} = 90 Lux$$

$$E_{minima} \ge \frac{E_{media}}{2} \rightarrow 90 \text{ Lux } \ge 52.75 \text{ Lux}$$

Por lo tanto, cumple con la normativa.

Hall para el público (sala de espera)

Este sector cuenta con una superficie de 2 metros de ancho por 3 metros de largo.

Se calcula el índice de local:

Índice del local =
$$\frac{(2m)*(3m)}{(3m)*(2m+3m)} = 0.40 m$$

Número mínimo de puntos de medición = $(0.40 + 2)^2 = 5.76$

Se realizaron 9 mediciones:

120	100	90
110	100	120
110	110	90

$$\sum Valores\ Medidos = 890\ Lux$$

$$E_{media} = \frac{890 \ Lux}{9} = 98.89 \ Lux$$

Según lo requiere el Decreto 351/79 en su Anexo IV en nuestro caso la iluminancia media debe ser de 200 (lux) por lo tanto **no cumple** con la normativa.

Se procede a verificar la uniformidad de la iluminancia:

$$E_{minima} = 90 Lux$$

$$E_{minima} \ge \frac{E_{media}}{2} \rightarrow 90 \text{ Lux } \ge 49.45 \text{ Lux}$$

Por lo tanto, cumple con la normativa.

3.3.1.2 Conclusión

Luego de haber analizado el nivel de iluminación en los distintos sectores que componen el taller, se puede decir que ningún sector cumple con el nivel de iluminancia media exigido por la legislación vigente, ya que no verifican la condición de iluminancia media mínima. Lo que si se cumple en todos los sectores es la uniformidad de iluminancia. Se propone aumentar la cantidad de luminarias.

3.3.2 Incendio

El incendio es el resultado de un fuego incipiente no controlado, cuyas consecuencias afectan tanto a la vida y salud, como a las condiciones estructurales del taller.

Para que se origine un incendio es necesario que estén presentes 3 elementos: combustible (madera, cartón, hidrocarburos, aceites, etc.), oxígeno y una fuente de calor. Un cuarto elemento llamado reacción en cadena, es necesario para el mantenimiento o la propagación del fuego. En el caso de que algunos de estos elementos estén ausentes o su cantidad no sea suficiente, la combustión no tiene lugar o se extingue, evitando la formación o propagación del fuego.

Las principales causas que originan un incendio son:

- Instalaciones eléctricas inadecuadas.
- Cigarrillos y fósforos.
- Almacenamiento de líquidos inflamables/combustibles.

- Falta de orden y limpieza.
- Chispas generadas por trabajos mecánicos.
- Superficies calientes.
- Calentamiento por fricción de partes móviles de maquinarias.
- Llamas abiertas.
- Residuos calientes de una combustión.
- Corte y soldadura.

Como medidas preventivas para incendios se recomienda:

- Tener en cuenta que la sección de los cables se adapte a la potencia instalada de los artefactos eléctricos a conectar, a fin de evitar sobrecargas y/o cortocircuitos.
- Apagar correctamente colillas de cigarrillos y fósforos.
- Almacenar los productos inflamables en lugares ventilados, rotulados y ubicarlos lejos de fuentes de calor.
- Evitar acumulación de residuos en áreas de trabajos para disminuir la carga de fuego.
- Capacitar para el buen manejo de equipos industriales que producen calor y quemadores portátiles.
- En trabajos de corte y soldadura mantener los locales ventilados. Capacitar a los operarios sobre el uso y manejo de extintores.

A continuación, se desarrollan los cálculos para la selección de los equipos extintores que serán instalados en el taller, y para determinar el ancho de salida de las puertas que permitirán evacuar el local en caso de emergencias. En el plano de Señalización en ANEXO IV se indica la ubicación de los matafuegos, la señalización de los mismos y de las salidas de emergencia

3.3.2.1 Medios de escape

Recorridos de evacuación

Antes de proceder al cálculo de los medios de escape, es importante tener en cuenta los recorridos de evacuación. Para el caso del taller, al ser un edificio de una planta, el recorrido es horizontal, recorriendo las distintas áreas del taller y con salida final a un espacio abierto (calle)

Para edificios con una ocupación máxima de 300 personas, es necesario disponer de una libre trayectoria no mayor a 40 metros, desde la puerta al punto más alejado del sector. Como indica la Imagen 3.8:

Imagen 3.8 – Trayectoria libre para edificios con ocupación menor a 300 personas

En el caso de que el local tenga salida a la vía pública. Se puede minimizar la trayectoria con el uso de salidas optativas, como indica la Imagen 3.9:

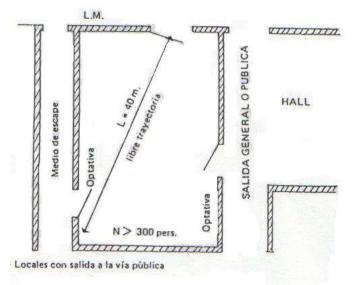


Imagen 3.9 - Trayectoria libre para edificios con ocupación menor a 300 personas y salida a la vía publica

Para interiores con factor de ocupación menor a 300, se pueden utilizar puntos en común para minimizar la trayectoria. Tal como se indica en la imagen

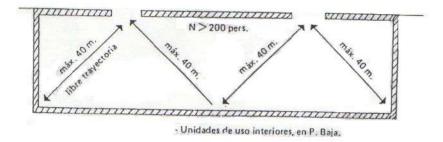


Imagen 3.10 – trayectoria libre para puntos en común en interiores, factor de ocupación menor a 200 personas

En el anexo 3, se muestra un plano con la trayectoria libre, la cual no supera los 40 metros, por lo tanto, cumple con la normativa vigente.

Ancho de pasillos, corredores y escaleras

El ancho total mínimo, la posición y número de salidas y corredores, se determinará en función al factor de ocupación del edificio y de una constante que incluye el tiempo máximo de evacuación y el coeficiente de salida.

El ancho total mínimo se expresa en unidades de anchos de salida:

Para edificios nuevos, estos tienen 0.55m cada unidad (las primeras dos), y 0.45m para las siguientes.

Para edificios existentes (donde resulten imposibles las ampliaciones) se permitirán anchos menores de acuerdo a la Tabla 3.10:

ANCHO MINIMO PERMITIDO		
Unidades	Edificios Nuevos	Edificios Existentes
2 unidades	1,10 m.	0,96 m.
3 unidades	1,55 m.	1,45 m.
4 unidades	2,00 m.	1,85 m.
5 unidades	2,45 m.	2,30 m.
6 unidades	2,90 m.	2,80 m.

Tabla 3.10 – Ancho mínimo permitido para edificios nuevos y existentes

Nota: El ancho mínimo permitido es de dos unidades de ancho de salida.

Nota 2: En todos los casos, el ancho se medirá entre zócalos.

Para el cálculo de unidades de salida se utiliza la Ecuación 3.5:

$$n = \frac{N}{100}$$

Ecuación 3.5 – Cálculo de unidades de salida

Donde

- n es el número de unidades de salida
- N es el número total de personas a ser evacuadas (calculado en base al factor de ocupación)

Nota: las fracciones iguales o superiores a 0.5 se redondearán a la unidad por exceso

Para el cálculo del total de personas a ser evacuadas se utiliza la Ecuación 3.6:

$$N = \frac{Sup}{X}$$

Ecuación 3.6 - Cálculo de personas a ser evacuadas

Donde

- Sup es la superficie cubierta del local
- X es la superficie mínima que ocupa una persona (en m2), este valor se obtiene de la tabla 3.6

USO	x en m2
a) Sitios de asambleas, auditorios, salas de conciertos, salas de baile	1
b) Edificios educacionales, templos	2
c) Lugares de trabajo, locales, patios y terrazas destinados a comercio, mercados, ferias, exposiciones, restaurantes	3
d) Salones de billares, canchas de bolos y bochas, gimnasios, pistas de patinaje, refugios noctumos de caridad	5
e) Edificio de escritorios y oficinas, bancos, bibliotecas, clínicas, asilos, internados, casas de baile	8
f) Viviendas privadas y colectivas	12
g) Edificios industriales, el numero de ocupantes será declarado por el propietario, en su defecto será	16
h) Salas de juego	2
i) Grandes tiendas, supermercados, planta baja y 1er. subsuelo	3
j) Grandes tiendas, supermercados, pisos superiores	8
k) Hoteles, planta baja y restaurantes	3
I) Hoteles, pisos superiores	20
m) Depósitos	30

Tabla 3.11 – factor de ocupación en función de las actividades realizadas

Sector taller unificado (taller y estética vehicular)

Se procede a realizar el cálculo de la cantidad de personas a ser evacuadas y la cantidad de anchos:

$$N = \frac{300m^2}{16\frac{m^2}{personas}} = 19 \ personas$$

$$n = \frac{19}{100} = 0.2 \ anchos$$

Por lo tanto, se toma una n mínima de 2 unidades, que arroja un ancho de 1.1m, entonces se necesita 1 puerta

En este caso se cuenta con un portón de 4 m de ancho con salida a la calle y una puerta de 1 metro que conecta al sector recepción y a la oficina.

Sector oficina

Se procede a realizar el cálculo de la cantidad de personas a ser evacuadas y la cantidad de anchos:

$$N = \frac{16m^2}{8\frac{m^2}{personas}} = 2personas$$

$$n = \frac{2}{100} = 0.02 \ anchos$$

Por lo tanto, se toma un n mimo de 2 unidades, que arroja un ancho de 1.1m, entonces se necesita 1 puerta. En este caso se cuenta una puerta de 1 metro

Sector recepción

Se procede a realizar el cálculo de la cantidad de personas a ser evacuadas y la cantidad de anchos:

$$N = \frac{6m^2}{3\frac{m^2}{personas}} = 2personas$$

$$n = \frac{2}{100} = 0.02 \ anchos$$

Por lo tanto, se toma un n mimo de 2 unidades, que arroja un ancho de 1.1m, entonces se necesita 1 puerta. En este caso se cuenta una puerta de 1.5m

3.3.2.2 Cálculo y Selección de equipos extintores

Para realizar el cálculo o verificación de la cantidad de aparatos extintores existentes en un local es necesario contar con:

- Un plano de planta del local, sector, o edificio según sea el caso
- Cantidad de material combustible y clase de fuego predominante del sector
- Tabla de poderes caloríficos de los materiales
- Tabla de conversión de unidades extintoras a capacidad de matafuegos según sea el agente extintor elegido
- Reglamentación o norma a la cual se va a ajustar el cálculo. En Argentina, en general se adopta la ley nacional 19587, decreto reglamentario 351/79, capitulo 18, artículos 176 a 181 inclusive y anexo VII

El procedimiento para el cálculo y selección de equipos extintores se detalla en los siguientes pasos:

 Determinación de la cantidad y tipos de combustibles que hay en el local o sector: esto se hace mediante estimación (si se trata de un proyecto) o mediante inspección (si es un establecimiento en funcionamiento), teniendo en cuenta las clases de fuegos existentes o predominantes.

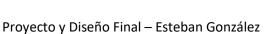
2. <u>Cálculo de la carga de fuego equivalente:</u> definida como "peso de madera por unidad de superficie (kg/m2), capaz de desarrollar una cantidad de calor equivalente a la de los materiales en el interior del sector considerado"

Este cálculo se realiza mediante la Ecuación 3.7:

$$q_e = \frac{\sum q}{Sup * 4.4 \frac{Mcal}{kg}} \left[kg/m^2 \right]$$

Ecuación 3.7 - cálculo de la carga de fuego equivalente

Dónde:


- o q_e es la carga de fuego equivalente, en kg/m2
- \circ \sum q es la sumatoria del poder calorífico de los elementos combustibles del sector analizado, estos se obtienen de la Tabla 3.12
- Sup es la superficie total del sector analizado, en m²
- o 4.4 Mcal/kg es el poder calorífico de la madera

Elemento	Poder Calorífico
Aceite Mineral	11 Mcal/kg
Adhesivos	5.4 Mcal/kg
Algodón	5 Mcal/kg
Automóviles	1200 Mcal/unidad
Cables	1.2 Mcal/metro
Cera	10 Mcal/kg
Detergente	0.5 Mcal/kg
Elementos de Oficina	200 Mcal/m2
Gasoil	10 Mcal/kg
Grasa	10 Mcal/kg
Muebles	200 Mcal/m2
Nafta	10.5 Mcal/litro
Poliéster	7.1 Mcal/kg
Polietileno	8.2 Mcal/kg
Resina Epoxi	7.1 Mcal/kg
Sellador	4 Mcal/kg
Siliconas	2.5 Mcal/kg
Vinilo	5 Mcal/kg

Tabla 3.12 – poder calorífico de distintos elementos presentes en el taller

3. Determinación del "riesgo del local" que depende del tipo de combustibles existentes. El decreto 351/79 establece en el anexo VII, punto 1.5, siete riesgos diferentes que van del 1 al 7. En otros países se usan letras o letras y números. Estos se reproducen en la Tabla 3.13:

Actividad Prediminante	Clasificación de los Materiales Según su Combustión						
£0	Riesgo 1	Riesgo 2	Riesgo 3	Riesgo 4	Riesgo 5	Riesgo 5	Riesgo 7
Residencial Administrativo	NP	NP	R3	R4	-	-	-
Comercial 1 Industrial Depósito	R1	R2	R3	R4	R5	R6	R7
Espectáculos Cultura	NP	NP	R3	R4	-	-	-

Tabla 3.13 – Clasificación de los riesgos de los materiales según su combustión

Notas:

Riesgo 1= Explosivo

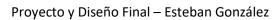
Riesgo 2= Inflamable

Riesgo 3= Muy Combustible

Riesgo 4= Combustible

Riesgo 5= Poco Combustible

Riesgo 6= Incombustible

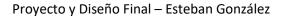

Riesgo 7= Refractarios

N.P.= No permitido

El riesgo 1 "Explosivo" se considera solamente como fuente de ignición.

4. Determinar las unidades extintoras mínimas por cada 200 m2 exigidas por la ley. Para ello con la carga de fuego equivalente y el riesgo del local se entra en la Tabla 3.14(si la clase predominante de fuego es A) o en la Tabla 3.15(para fuegos clase B). punto 4 del anexo VII del decreto.

CARGA	RIESGO							
DE FUEGO	Riesgo 1 Explos.	Riesgo 2 Inflam.	Riesgo 3 Muy Comb.	Riesgo 4 Comb.	Riesgo 5 Poco comb.			
hasta 15Kg/m2	=	50.01 50.01	1 A	1 A	1 A			
16 a 30 Kg/m2	-	-	2 A	1 A	1 A			
31 a 60 Kg/m2		5 <u>7.01</u>	3 A	2 A	1 A			
61 a 100 Kg/m2	-	-	6 A	4 A	ЗА			
> 100 Kg/m2	A determinar ei	n cada caso.						


Tabla 3.14 – potencial extintor mínimo para extintores clase A

CARGA	RIESGO							
DE FUEGO	Riesgo 1 Explos.	Riesgo 2 Inflam.	Riesgo 3 Muy Comb.	Riesgo 4 Comb.	Riesgo 5 Poco comb.			
hasta 15Kg/m2	s=s	6 B	4 B	-	=8			
16 a 30 Kg/m2	3 — 8	8 B	6 B	_	-			
31 a 60 Kg/m2	s=s	10 B	8 B	500	===			
61 a 100 Kg/m2	-	20 B	10 B	-	-			
> 100 Kg/m2	A determinar e	n cada caso.	*		•			

Tabla 3.15 – potencial extintor mínimo para extintores clase B

5. Determinar la cantidad de matafuegos mediante una tabla de conversión de unidades extintoras a capacidad de matafuego según el agente extintor que se elige

Agente extintor			Capacidad	I	otencial extintor		
Agua		101		2 A			
Anhidrido carbónico			3,5 kg		2 BC		
			5 kg		3 BC		
			7 kg		4 BC		
	12		10 kg		5 BC		
Espuma			101		2 A - 4 B		
Espuma productora de películas acuosa	s (EPPA)		101		2 A - 6 B		
Soda ácido	100	İ	101		2 A		
Halór, 1211 o 1301			1 kg		1,5 BC		
			2,5 kg		з вс		
			5 kg		4 BC		
			10 kg		1 A - 12 BC		
			13 kg		1 A - 15 BC		
Baldes con agua o arena			101	+	0,5 A		
Polvo	Tri	clase	Sódico	Potásico	Bicarbonato		
	(base	fosfato			potásico		
	de ar	nonio)			Urea		
· 1,5 kg	0,5 A	2 BC	2 BC	2,5 BC	5 BC		
2,5 kg	1 A	4 BC	4 BC	5 BC	10 BC		
5 kg	1,5 A	6 BC	6 BC	7,5 BC	15 BC		
7 kg	2 A	8 BC	8 BC	10 BC	20 BC		
10 kg	3 A	12 BC	12 BC	15 BC	30 BC		
13 kg	4 A	16 BC	16 BC	20 BC	40 BC		

Tabla 3.16 – tabla de conversión de unidades extintores a capacidad de matafuego, del libro "protección de edificios contra incendio" de Néstor Quadri

- 6. Distribuir los matafuegos en el plano del local teniendo en cuenta el camino máximo a recorrer en libre trayectoria para alcanzar un matafuego suponiendo a la persona que lo va a usar ubicado en la posición más desfavorable. Para la legislación citada es de 20 metros para matafuegos clase A o 15 metros para fuegos clase B. es importante recordar que la cantidad de matafuegos exigida por ley es la mínima, el profesional puede agregar matafuegos si lo cree conveniente en especial cuando se trata de altos riesgos.
- 7. Armar un plan de mantenimiento de los matafuegos según las instrucciones de la chapa de características de los mismos.

Sector taller

El sector taller cuenta con una superficie de 260 metros cuadrados, los elementos combustibles presentes en el son:

<u>Aceite mineral:</u> se dispone de 2 barriles de 205 litros, más 25 bidones de 20 litros, dando un total de 705 litros, la densidad promedio del aceite es de 0.85 kg/l de la Tabla 3.12se obtiene una carga de fuego de 11 Mcal/kg

Entonces

$$q_1 = 0.85 \frac{kg}{l} * 705 l * 11 \frac{Mcal}{kg} = 6591.75 Mcal$$

<u>Grasa:</u> en el sector taller hay 3 baldes de grasa, cada balde tiene un volumen de 20 litros y un peso aproximado de 18 kilos. De la Tabla 3.12 se obtiene una carga de fuego de 10 Mcal/kg

Entonces

$$q_2 = 3 * 18kg * 10 \frac{Mcal}{kg} = 540 Mcal$$

<u>Gasoil:</u> en el sector taller hay un bidón de gasoil de 30 litros. Teniendo en cuenta que la densidad del gasoil es de 0.85 kg/l y utilizando la Tabla 3.12 se obtiene una carga de fuego de 10 Mcal/kg

Entonces

$$q_3 = 30l * 0.85 \frac{kg}{l} * 10 \frac{Mcal}{kg} = 170 Mcal$$

<u>Nafta:</u> en el sector taller hay un bidón de gasoil de 30 litros. Utilizando la Tabla 3.12 se obtiene una carga de fuego de 10.5 Mcal/l

Entonces

$$q_4 = 30l * 10.5 \frac{Mcal}{l} = 315 Mcal$$

<u>Automóviles:</u> considerando una capacidad para albergar 8 automóviles en promedio, de la Tabla 3.12 se obtiene una carga de fuego de 1200 Mcal/unidad

Entonces

$$q_5 = 8 \text{ unidades} * 1200 \frac{mcal}{unidad} = 9600 \text{ Mcal}$$

<u>Cables:</u> considerando una cantidad de cableado de 300 m aproximadamente, de la Tabla 3.12 se obtiene una carga de fuego de 1.2 Mcal/metro

Entonces

$$q_6 = 300m * 1.2 \frac{mcal}{m} = 360 Mcal$$

La sumatoria de las distintas cargas es

$$\sum q = 6591.75\ \textit{Mcal} + 540\textit{Mcal} + 170\ \textit{Mcal} + 315\ \textit{Mcal} + 9600\ \textit{Mcal} + 360\ \textit{Mcal} = 17576.75\ \textit{Mcal}$$

El total de carga de fuego equivalente es de :

$$q_e = \frac{17576.75 Mcal}{260 \text{ m2 x4.4Mcal/kg}} = 15.4 kg/m^2$$

De la Tabla 3.13, definiendo la actividad como comercial/industrial/depósito y teniendo en cuenta que los materiales son inflamables, obtenemos una clasificación R2 (riesgo 2).

De la Tabla 3.14 y Tabla 3.15, con el total de la carga de fuego equivalente para el sector se obtiene un potencial extintor mínimo de 2A y 8B

Utilizando la Tabla 3.16, entrando con el potencial extintor mínimo y teniendo en cuenta que el agente extintor seleccionado es polvo triclase, el extintor seleccionado será como mínimo de una capacidad de 7kg.

Sector estética vehicular

El sector estético vehicular cuenta con una superficie de 50 metros cuadrados, los elementos combustibles presentes en el son:

<u>Automóviles:</u> considerando una cantidad de 3 unidades, de la Tabla 3.12se obtiene una carga de fuego de 1200 Mcal/unidad

Entonces

$$q_1 = 3 \text{ unidades} * 1200 \frac{mcal}{unidad} = 3600 \text{ Mcal}$$

<u>Desengrasante/detergente:</u> considerando una cantidad de 10 kg, de Tabla 3.12 se obtiene una carga de fuego de 0.5 Mcal/kg

Entonces

$$q_2 = 0.5 kg * 10 \frac{Mcal}{kg} = 5 Mcal$$

<u>Cera:</u> considerando una cantidad de 10 kg, de la Tabla 3.12se obtiene una carga de fuego de 10 Mcal/kg

Entonces

$$q_3 = 10 \ kg * 10 \ \frac{Mcal}{kg} = 100 \ Mcal$$

<u>Cepillos:</u> considerando que los cepillos son de polietileno y hay 3 kg de material aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 8.2 Mcal/kg

Entonces

$$q_4 = 5 kg * 8.2 \frac{mcal}{kg} = 41 Mcal$$

<u>Siliconas:</u> considerando una cantidad de siliconas de 3kg aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 2.5 Mcal/kg

Entonces

$$q_5 = 5 kg * 2.5 \frac{mcal}{kg} = 12.5 Mcal$$

<u>Vinilos:</u> considerando una cantidad de vinilo de 4 kg aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 5 Mcal/kg

Entonces

$$q_6 = 4 kg * 5 \frac{mcal}{kg} = 20 Mcal$$

Resina Epoxi: considerando una cantidad de 10 kg aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 7.1 Mcal/kg

Entonces

$$q_7 = 10 \ kg * 7.1 \ \frac{mcal}{kg} = 71 \ Mcal$$

Adhesivos: considerando una cantidad de 10 kg aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 5.4 Mcal/kg

Entonces

$$q_8 = 10 \ kg * 5.4 \frac{mcal}{kg} = 54 \ Mcal$$

<u>Sellador:</u> considerando una cantidad de 5 kg aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 4 Mcal/kg

Entonces

$$q_9 = 5 kg * 4 \frac{mcal}{kg} = 20 Mcal$$

Microfibras de poliéster: considerando una cantidad de 10 kg aproximadamente, de Tabla 3.12se obtiene una carga de fuego de 9.3 Mcal/kg

Entonces

$$q_{10} = 10 \ kg * 7.1 \ \frac{mcal}{kg} = 93 \ Mcal$$

Esponjas y pads de algodón: considerando una cantidad de 10 kg aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 5 Mcal/kg

Entonces

$$q_{11} = 10 \ kg * 5 \ \frac{mcal}{kg} = 50 \ Mcal$$

<u>Cables:</u> considerando una cantidad de cableado de 80 m aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 1.2 Mcal/unidad

Entonces

$$q_{12} = 80m * 1.2 \frac{mcal}{unidad} = 96 Mcal$$

La sumatoria de las distintas cargas es:

$$\sum q = 3600 + 5 + 100 + 41 + 12.5 + 20 + 71 + 54 + 20 + 93 + 50 + 96 \ [\textit{Mcal}] = 4162.5 \ \textit{Mcal}$$

El total de carga de fuego equivalente es de:

$$q_e = \frac{4162.5 \, Mcal}{50 \, m2 \, x4.4 Mcal/kg} = 18.92 \, kg/m2$$

De la Tabla 3.13, definiendo la actividad como comercial/industrial/depósito y teniendo en cuenta que los materiales son inflamables, obtenemos una clasificación R2 (riesgo 2).

De la Tabla 3.14 y Tabla 3.15, con el total de la carga de fuego equivalente para el sector se obtiene un potencial extintor mínimo de 2A y 8B

Utilizando Tabla 3.16, con el potencial extintor mínimo teniendo en cuenta que el agente extintor seleccionado es polvo triclase, el extintor seleccionado será como mínimo de una capacidad de 7kg.

Sector sala de espera

El sector sala de espera cuenta con una superficie de 6 metros cuadrados, los elementos combustibles presentes en el son:

<u>Muebles:</u> considerando una superficie cubierta elementos de oficina de 2 metros cuadrados, de la Tabla 3.12 se obtiene una carga de fuego de 200 Mcal/m2

Entonces

$$q_1 = 2m2 * 200 \frac{Mcal}{m2} = 400 Mcal$$

<u>Cables:</u> considerando una cantidad de cableado de 80 m aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 1.2 Mcal/unidad

Entonces

$$q_6 = 80m * 1.2 \frac{mcal}{unidad} = 96 Mcal$$

La sumatoria de las distintas cargas es

$$\sum$$
 q = 400 + 96 [Mcal] = 496 Mcal

El total de carga de fuego equivalente es de :

$$q_e = \frac{496 Mcal}{6 m2 x4.4 Mcal/kg} = 18.8 kg/m2$$

De la Tabla 3.13, definiendo la actividad como comercial/industrial/depósito y teniendo en cuenta que los materiales son inflamables, obtenemos una clasificación R2 (riesgo 2).

De la Tabla 3.14y Tabla 3.15, con el total de la carga de fuego equivalente para el sector se obtiene un potencial extintor mínimo de 2A y 8B

Utilizando la Tabla 3.16, entrando con la carga de fuego equivalente y utilizando un polvo triclase, el extintor seleccionado será como mínimo de una capacidad de 7kg.

Sector oficina

La oficina cuenta con una superficie de 16 metros cuadrados, los elementos combustibles presentes en el son:

<u>Muebles y elementos de oficina:</u> considerando una superficie cubierta elementos de oficina de 6 metros cuadrados, de la Tabla 3.12se obtiene una carga de fuego de 200 Mcal/m2

Entonces

$$q_1 = 6m2 * 200 \frac{Mcal}{m2} = 1000 Mcal$$

<u>Cables:</u> considerando una cantidad de cableado de 80 m aproximadamente, de la Tabla 3.12se obtiene una carga de fuego de 1.2 Mcal/unidad

Entonces

$$q_2 = 80m * 1.2 \frac{mcal}{unidad} = 96 Mcal$$

La sumatoria de las distintas cargas es

$$\sum q = 1000 + 96 = 1296 Mcal$$

El total de carga de fuego equivalente es de

$$q_e = \frac{1296 \, Mcal}{16m2 * 4.4 \, Mcal/kg} = 18.4 \, kg/m2$$

De la Tabla 3.13, definiendo la actividad como comercial/industrial/depósito y teniendo en cuenta que los materiales son inflamables, obtenemos una clasificación R2 (riesgo 2).

De la tabla Tabla 3.14y Tabla 3.15, con el total de la carga de fuego equivalente para el sector se obtiene un potencial extintor mínimo de 2A y 8B

Utilizando la Tabla 3.16, con el potencial extintor mínimo y utilizando polvo triclase, el extintor seleccionado será como mínimo de una capacidad de 7kg.

En la memoria técnica, se resume la cantidad y tipo de extintores requeridos para cada sector del taller, en la Tabla 3.4.

3.4 ANEXO 3 – PLANOS DE SEGURIDAD E HIGIENE

4 Instalación Eléctrica

4.1 Memoria Descriptiva

En el capítulo 4 del informe se presenta la verificación de conductores y protecciones de la instalación eléctrica del taller "Electrónica Check", ubicado en la calle Saturnino Torres 999 de la ciudad de Neuquén.

El taller consta de una superficie cubierta de 400 m². En la misma se encuentra el taller mecánico, un sector de estética vehicular, un salón de recepción, una oficina, dos baños y una cocina para el personal, las cuales necesitan suministro eléctrico.

Para llevar a cabo la instalación eléctrica se debe partir del tablero principal para definir los circuitos seccionales que distribuyen en baja tensión la energía a todos los receptores de cada sector. Es necesario previamente, el cálculo de los conductores para poder hacer la distribución desde el tablero principal hasta los tableros seccionales para la alimentación de los distintos equipos e instalaciones.

Posterior a estos cálculos, se seleccionan los elementos de protección para los equipos e instalaciones y personal del taller.

Luego, se realiza el cálculo y diseño de iluminación interior de la planta según lo requiere el Decreto 351/79 de la legislación vigente.

El conductor utilizado para toda la instalación será el IRAM NM-247-3, con conductor de cobre con aislación de PVC.

Todas las canalizaciones de los conductores serán a la vista, y utilizando tubos de PVC normalizados. Debido a que no existen tramos con grandes solicitaciones mecánicas para los tubos (como, por ejemplo, tubos en losas o enterrados), se utilizara el modelo semipesado.

La instalación eléctrica de baja tensión a realizar se efectúa conforme a la "Reglamentación para la Ejecución de Instalaciones Eléctricas en Inmuebles", vigente de la Asociación Electrotécnica Argentina (AEA) 90364-7-771-Edición 2006.

4.2 Memoria Técnica

La alimentación al taller se realiza mediante un tablero principal (TP), ubicado en la oficina, desde aquí parte hasta el tablero seccional 1 (TS1) ubicado en la oficina, para abastecer los diferentes circuitos seccionales y terminales del sector y hasta el tablero seccional 2, ubicado en el taller, para abastecer los diferentes circuitos seccionales del sector taller y estética vehicular

El plano del esquema unifilar se presenta en el Anexo IV.

4.2.1 Circuitos Principales y seccionales

El tablero principal (TP) está ubicado en la oficina y alimenta los tableros seccionales TS1 y TS2, no posee circuitos terminales.

El tablero seccional 1, está ubicado en la oficina, inmediato a TP, y de él se alimentan los circuitos terminales de iluminación general (IUG1), de tomacorrientes de uso general (TUG1) y de tomacorrientes de uso específico (TUE 1), correspondientes a la zona de oficinas, baños, cocina y recepción.

El tablero seccional 2, está ubicado en el centro de la zona del taller, de él se alimentan los circuitos terminales de iluminación general (IUG 2, IUG3, IUG4, IUG5) de tomacorrientes de uso general (TUG2, TUG3, TUG4), de tomacorrientes de uso específico (TUE2, TUE3), correspondientes a la zona del taller y un circuito de alimentación a carga única (ACU) para alimentar un compresor.

Tablero	Ubicación	Circuito
TP	Sector Oficina	-
		IUG 1
TS1	Sector Oficina	TUG 1
		TUE 1
		IUG 2
		IUG 3
		IUG 4
		IUG 5
TS2	Sector Taller	TUG 2
132	Sector raner	TUG 3
		TUG 4
		TUE 2
		TUE 3
		ACU

Tabla 4.1 – Circuitos principales y seccionales

4.2.2 Conductores

Los conductores utilizados serán bajo norma IRAM NM 247-3, con conductor cobre con aislación de PVC, respetando el código de colores para cada fase, neutro y conductor de protección PE, donde:

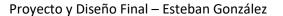
- L1 es de color marrón.
- L2 es de color negro.
- L3 es de color rojo.
- Neutro es de color celeste.
- PE es de color verde y amarillo.

Los conductores se detallan en la Tabla 4.2 :

Circuito/Tablero	Norma	Fase(s)	Disposición (mm²)
TP	IRAM NM 247-3	L1, L2, L3	4x(1x16) + PE 16
TS1	IRAM NM 247-3	L1, L2, L3	4x(1x4) + PE 4
TS2	IRAM NM 247-3	L1, L2, L3	4x(1x10) + PE 10
IUG1	IRAM NM 247-3	L1	2x (1x2.5) + PE 2.5
IUG2	IRAM NM 247-3	L1	2x (1x2.5) + PE 2.5
IUG3	IRAM NM 247-3	L2	2x (1x2.5) + PE 2.5
IUG4	IRAM NM 247-3	L3	2x (1x2.5) + PE 2.5
IUG5	IRAM NM 247-3	L1	2x (1x2.5) + PE 2.5
TUG1	IRAM NM 247-3	L2	2x (1x2.5) + PE 2.5
TUG2	IRAM NM 247-3	L2	2x (1x2.5) + PE 2.5
TUG3	IRAM NM 247-3	L3	2x (1x2.5) + PE 2.5
TUG4	IRAM NM 247-3	L1	2x (1x2.5) + PE 2.5
TUE1	IRAM NM 247-3	L3	2x (1x2.5) + PE 2.5
TUE2	IRAM NM 247-3	L2	2x (1x2.5) + PE 2.5
TUE3	IRAM NM 247-3	L3	2x (1x2.5) + PE 2.5
ACU	IRAM NM 247-3	L1, L2, L3	4x (1x2.5) + PE 2.5

Tabla 4.2 - Conductores

4.2.3 Canalizaciones


Las canalizaciones utilizadas son de PVC autoextinguibles, del fabricante TUBELECTRIC, tipo semipesado.

No se necesitan tubos extra pesados, debido a que todas las canalizaciones son a la vista y no existen tramos con solicitaciones a esfuerzos (como por ejemplo tubos en losas, o enterrados). Estas se detallan en la Tabla 4.3:

Circuito/Tablero	Fabricante	Material	Tipo	Modelo utilizado	Diámetro (mm)
TP	TUBELECTRIC	PVC	Semipesado	TR0040	40
TS1	TUBELECTRIC	PVC	Semipesado	TR0022	22
TS2	TUBELECTRIC	PVC	Semipesado	TR0032	32
IUG1	TUBELECTRIC	PVC	Semipesado	TR0020	20
IUG2	TUBELECTRIC	PVC	Semipesado	TR0020	20
IUG3	TUBELECTRIC	PVC	Semipesado	TR0020	20
IUG4	TUBELECTRIC	PVC	Semipesado	TR0020	20
IUG5	TUBELECTRIC	PVC	Semipesado	TR0020	20
TUG1	TUBELECTRIC	PVC	Semipesado	TR0016	16
TUG2	TUBELECTRIC	PVC	Semipesado	TR0016	16
TUG3	TUBELECTRIC	PVC	Semipesado	TR0016	16
TUG4	TUBELECTRIC	PVC	Semipesado	TR0016	16
TUE1	TUBELECTRIC	PVC	Semipesado	TR0016	16
TUE2	TUBELECTRIC	PVC	Semipesado	TR0016	16
TUE3	TUBELECTRIC	PVC	Semipesado	TR0016	16
ACU	TUBELECTRIC	PVC	Semipesado	TR0020	20

Tabla 4.3 - Canalizaciones

4.2.4 Elementos de protección

Para proteger las instalaciones contra sobrecargas y cortocircuitos se utilizan los interruptores automáticos. Los interruptores automáticos utilizados se detallan en la Tabla 4.4:

Circuito	Fabricante	Línea	Modelo	Polos	Un (V)	In (A)	Clase	Poder de corte (A)
TP	Schneider	Easy 9	EZ9F34450	4	380	50	С	4500
Protección conductor TS1	Schneider	Easy 9	EZ9F34420	4	380	20	С	4500
Protección conductor TS2	Schneider	Easy 9	EZ9F34440	4	380	40	С	4500
TS1	Schneider	Easy 9	EZ9F34420	4	380	20	С	4500
TS2	Schneider	DOMAE	12590	4	380	40	С	3000
IUG1	Schneider	DOMAE	12993	2	220	16	С	3000
IUG2	Schneider	DOMAE	12993	2	220	16	С	3000
IUG3	Schneider	DOMAE	12993	2	220	16	С	3000
IUG4	Schneider	DOMAE	12993	2	220	16	С	3000
IUG5	Schneider	DOMAE	12993	2	220	16	С	3000
TUG1	Schneider	DOMAE	12993	2	220	16	С	3000
TUG2	Schneider	DOMAE	12993	2	220	16	С	3000
TUG3	Schneider	DOMAE	12993	2	220	16	С	3000
TUG4	Schneider	DOMAE	12993	2	220	16	С	3000
TUE1	Schneider	DOMAE	12993	2	220	16	С	3000
TUE2	Schneider	DOMAE	12993	2	220	16	С	3000
TUE3	Schneider	DOMAE	12993	2	220	16	С	3000
ACU	Schneider	DOMAE	12586	4	380	16	С	3000

Tabla 4.4 – Interruptores Automáticos Termomagnéticos seleccionados

Los interruptores seleccionados se ilustran en las imágenes

Imagen 4.1 – interruptor automático bipolar DOMAE del fabricante Schneider, poder de corte 3kA

Imagen 4.2- interruptor automático tetrapolar DOMAE del fabricante Schneider, poder de corte 3kA

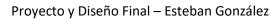
Imagen 4.3 – Interruptor termomagnético tetrapolar línea Easy 9 del fabricante Schneider, poder de corte 4,5 kA

En cuanto a la protección contra contactos directos e indirectos, se colocan interruptores diferenciales. En la Tabla 4.5 se indica la disposición de los interruptores y sus principales características:

Tablero	Fabricante	Línea	Modelo	Tipo	Polos	Un	In	Sensibilidad (mA)	Tipo
TP	Schneider	Acti9 iID	A9R35463	I.D	4	380/415	63	300 (S)	AC
TS1	Schneider	DOMAE	11028	I.D	4	380/415	25	30	AC
TS2	Schneider	DOMAE	11029	I.D	4	380/415	40	30	AC

Tabla 4.5 – interruptores diferenciales

En la se muestra los disyuntores tetrapolares de la línea "Acti 9 iID" y "DOMAE":


Imagen 4.4 – Disyuntor tetrapolar línea Acti 9 iID (izquierda) y línea DOMAE (derecha), del fabricante Schneider

4.2.5 Puesta a tierra

En la tabla 4.6 se especifican las jabalinas utilizadas, teniendo en cuenta que la resistencia total del conjunto no supere los 40Ω .

Fabricante	Genrod
Modelo	JLICA1615
Diámetro (mm)	16
Longitud (m)	1.5

Punta	Roscada
Cantidad	3
Alma	Acero SAE 1010
Revestimiento	Cobre electrolítico (98%)
Resistencia Total (Ω)	<40

Tabla 4.6 – Jabalinas

Imagen 4.5 – jabalinas Genrod acoplables de Acero-Cobre

Para una rápida ubicación y medición de la puesta a tierra se colocará una cámara de inspección, del fabricante Genrod la cual se detalla en la Tabla 4.7:

Fabricante	Código	Medidas (cm)	Material
Genrod	CI 1	25x25	Fundición de hierro

Tabla 4.7 – Cámara de inspección

Imagen 4.6 – Cámara de inspección

4.2.6 Gabinetes

Los gabinetes utilizados para el tablero principal y los circuitos seccionales, se detallan en Tabla 4.8:

Tablero	Fabricante	Modelo	Ancho (mm)	Alto (mm)	Prof. (mm)	Clase II	IP	IK	Módulos	Potencia disipada (W)
TP	Tableplast	GR3900	380	464	176	Si	65	10	39	82
TS1	Tableplast	GR3900	380	464	176	Si	65	10	39	82
TS2	Tableplast	GR4300	483	466	176	Si	65	10	54	103

Tabla 4.8 – gabinetes utilizados

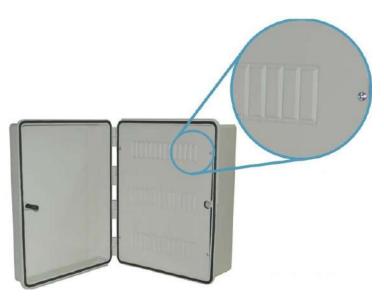


Imagen 4.7 – Gabinete Tableplast, línea GR

4.2.7 Propuesta de mejora de iluminación interior

Para mejorar la iluminación interior de acuerdo a los niveles mínimos requeridos por el Decreto 351/79 y la Resolución SRT No 84/11, en la Tabla 4.9 se indica la cantidad mínima de luminarias para cada sector del taller:

Sector	Fabricante	Modelo	Potencia (W)	Longitud (mm)	Temperatura color (K)	Flujo Lumínico (lm)	Cantidad de luminarias	Cantidad de lámparas
Taller	Phillips	LED Ecofit T8	20	1500	4000	2000	75	150
Estética Vehicular	Phillips	LED Ecofit T8	20	1500	4000	2000	20	40
Sala de espera	Phillips	LED Ecofit T8	20	1500	4000	2000	4	8
Oficina	Phillips	LED Ecofit T8	20	1500	4000	2000	1	2

Tabla 4.9 – Propuesta de mejora de luminarias para el taller

Imagen 4.8 – Tubos LED seleccionados para la propuesta de mejora de iluminación

4.3 Memoria de Cálculo

Para llevar a cabo la instalación eléctrica del taller, es necesario realizar los siguientes cálculos:

- 1. Determinación de la demanda de potencia máxima simultánea (DPMS)
- 2. Determinación de la corriente de los circuitos y máxima por fase (IB)
- 3. Selección del conductor a partir de su corriente máxima admisible (IZ)
- 4. Elección de la corriente asignada de los dispositivos de protección In
- 5. Verificación de la protección por sobrecarga
- 6. Determinación de la corriente de cortocircuito (I"K)
- 7. Verificación por máxima exigencia térmica
- 8. Verificación de la actuación de la protección por corriente mínima de cortocircuito
- 9. Verificación de la caída de tensión, mediante el método de GDC
- 10. Cálculo y selección de canalizaciones
- 11. Selección de gabinetes y verificación de disipación de calor
- 12. Puesta a tierra

4.3.1 Determinación de la demanda de potencia máxima simultánea (DPMS)

La potencia demandada se calcula en base a la potencia activa y el factor de potencia, utilizando la Ecuación 4.1:

$$S = \frac{P}{\cos \varphi}$$

Ecuación 4.1 - Relación de potencia

Dónde:

- S es la potencia demandada [VA].
- P es la potencia activa [W].
- $\cos \varphi$ es el factor de potencia

Como primera aproximación, se determina el grado de electrificación utilizando la Tabla 4.10:

Tabla 771.8.IV – Resumen de los grados de electrificación de oficinas y locales comerciales proyectados originalmente para tal fin

Grado de electrificación	Superficie (límite de aplicación)	Demanda de potencia máxima simultánea calculada (sólo para determinar el grado de electrificación)
Minimo	hasta 30 m²	hasta 4,5 kVA
Medio	más de 30 m² hasta 75 m²	hasta 7,8 kVA
Elevado	más de 75 m² hasta 150 m²	hasta 12,2 kVA
Superior	más de 150 m²	más de 12,2 kVA

Tabla 4.10 – Resumen de los grados de electrificación de locales y oficinas

Sabiendo que la superficie cubierta del taller es de 400 m², se obtiene un grado de electrificación SUPERIOR, con una demanda de potencia máxima simultánea (DPMS) de más de 12.2 kVA

El número mínimo de circuitos en base al grado de electrificación se obtiene de la Tabla 4.11:

Tabla 771.8.V – Resumen de los números mínimos de circuitos de las oficinas y locales comerciales construidos originalmente para tal fin

	be an e			Tipo d	e circuitos		
Grado de electrificación	Cantidad mínima de circuitos	Variante	Iluminación uso general (IUG)	Tomacorriente uso general (TUG)	Iluminación uso especial (IUE)	Tomacorriente uso especial (TUE)	Circuito de libre elección
Mínimo	2	Única	1	1			
23011 W.C.		a)	1	1	1		***
Medio	3	b)	1	1		1	
Medio	3	c)	2	1			
		d)	1	2			
Elevado	5	Única	2	2		1	
Superior *	6	Única	2	2		1	1

*Nota:

Se deberà adicionar el circuito de libre elección para completar el número mínimo requerido por el grado de electrificación determinado. La denominación de libre elección se refiere a la posibilidad del empleo de cualquiera de los circuitos tipificados en 771.7.6 a), b) y c) (IUG, TUG, IUE, TUE, MBTF, APM, ATE, MBTS, ACU, ITE y OCE).

Tabla 4.11 – Resumen de los números mínimos de circuitos

para un grado de electrificación superior se obtiene una cantidad mínima de circuitos igual a 6, con disposición única de:

- 2 circuitos de iluminación general (IUG)
- 2 circuitos de tomacorrientes de uso general (TUG)
- 1 circuito de tomacorriente de uso especial (TUE)
- 1 circuito de libre elección

Además, cada circuito tiene una máxima cantidad de bocas a utilizar y un máximo calibre de protección, estos se detallan en la Tabla 4.12:

Tipo de circuito	Designación	Sigla	Máxima canti- dad de bocas	Máximo calibre de la protección
Uso	Iluminación uso general	IUG	15	16 A
General	General Tomacorriente uso general		15	20 A
Uso Iluminación uso especial		IUE	12	32 A
Especial	Tomacorriente uso especial	TUE	12	32 A
	Alimentación a fuentes de muy baja tensión funcional	MBTF	15	20 A
	Salidas de fuentes de muy baja tensión funcional		Sin límite	Responsabilidad del proyectista
	Alimentación pequeños motores	APM	15	25 A
Uso	Alimentación tensión estabilizada	ATE	15	Responsabilidad del proyectista
específico	Circuito de muy baja tensión sin puesta a tierra	мвтѕ	Sin limite	Responsabilidad del proyectista
	Alimentación carga única	ACU No corresponde		Responsabilidad del proyectista
	Iluminación trifásica específica	ITE	12 por fase	Responsabilidad del proyectista
	Otros circuitos específicos	OCE	Sin límite	Responsabilidad del Proyectista

Tabla 4.12 – Resumen de los tipos de circuitos

De la Tabla 4.13, se obtienen los puntos mínimos de utilización en función del ambiente y el grado de electrificación:

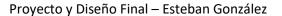


Tabla 771.8.VI – Resumen de los puntos mínimos de utilización en oficinas y locales comerciales proyectados originalmente para tal fin (ver texto en 771.8.3.2.3.1 y 771.8.3.2.3.2)

	Grado de	Punto	os mínimos de utiliz	ación	
Ambiente	electrificación	IUG	TUG	TUE	
	Minimo				
Salón general	Medio	Una boca cada 9 m² de superficie o fracción (mínimo	Una boca cada 9 m² de superficie o fracción (mínimo		
	Elevado y Superior	una boca)	dos bocas)	Una boca cada 18 m de perímetro o fracción	
Sala de reuniones, Mínimo y Med conferencias, mi-		Una boca cada 9 m² de superficie o	Una boca cada 9 m² de superficie o	***	
crocines o usos similares	Elevado y Superior	fracción (mínimo una boca)	fracción (mínimo dos bocas)	Una boca	
Dagasaha sakada	Mínimo y Medio	Una boca	Dos bocas		
Despacho privado	Elevado y Superior	Ona boca	Dos bocas		
	Minimo y Medio	Una boca	Dos bocas	-	
Cocina	Elevado y Superior	Dos bocas	Tres bocas más un tomacorriente por cada electrodo- méstico de ubica- ción fija	Una boca (puede estar dedicada a ur electrodoméstico de ubicación fija)	
Baño (para toilette	Minimo y Medio	Una boca	Una boca		
ver <u>771.8.5 n)</u>	Elevado y Superior	Una boca cada 18 m² de superficie o fracción	Dos bocas (una de ellas libre)	(s ees)	
Vestibulo	Mínimo y Medio	Una boca cada 9 m² de superficie	Una boca cada		
o recepción	Elevado y Superior	o fracción (mínimo una boca)	18 m² de superficie o fracción (mínimo una boca)	Una boca	
	Mínimo y Medio	Una boca cada 5 m de longitud	Una boca cada 5 m de longitud	5	
Pasillo	Elevado y Superior	o fracción (mínimo una boca)	o fracción, para pasillos de L > 2m	*	

Tabla 4.13 – Resumen de los puntos mínimos de utilización

Sector	Ambiente	Superficie / longitud	Puntos m	Puntos mínimos de utilización			Puntos utilizados			
			IUG	TUG	TUE	IUG	TUG	TUE		
Taller	General	260	29	29	15	40	30	15		
railer	Pasillo	10	2	2	-	4	2	-		
Baño	Baño	3	1	1	-	1	1	-		
Cocina	Cocina	7	2	3	1	2	4	2		
Oficina	Oficina	16	1	2	-	2	4	1		
Officina	Baño	2	1	1	-	1	1	-		
Estética Vehicular	General	50	6	6	3	20	6	5		
Sala de espera	Recepción	7	1	1	1	2	2	1		

Tabla 4.14 - Puntos de utilización utilizados

El cálculo de los puntos mínimos de utilización continúa haciendo un relevamiento de los consumos de los equipos e instalaciones que sean de uso específico, utilizando la Tabla 4.12:

El único equipo de potencia significativa es el compresor de aire, el cual será alimentado mediante un circuito de alimentación a carga única (ACU)

Sabiendo la potencia activa del compresor y su factor de potencia (Tabla 2.12 – Compresor), se calcula la potencia demandada utilizando la Ecuación 4.1:

$$S_{ACU} = \frac{9000W}{0.9} = 10000 \, VA$$

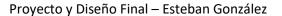

De la Tabla, se obtiene el valor de la demanda máxima de potencia simultánea para cada circuito (DMPS)

Tabla 771.9.1 - Demanda máxima de potencia simultánea

5/22/00/02/00	Valor mínimo de la pote	ncia máxima simultánea				
Circuito	Viviendas	Oficinas y locales				
Iluminación para uso ge- neral sin tomacorrientes derivados	66 % de la que resulte al considerar todos los puntos de utilización previs- tos, a razón de 150 VA cada uno.	100 % de la que resulte al considerar todos los puntos de utilización previs- tos, a razón de 150 VA cada uno.				
lluminación para uso ge- neral con tomacorrientes derivados	2200 VA por cada circuito.					
Tomacorrientes para uso general	2200 VA por cada circuito.					
lluminación para uso especial	66 % de la que resulte al considerar todos los puntos de utilización previs- tos, a razón de 500 VA cada uno.	100 % de la que resulte al considerar todos los puntos de utilización previs- tos, a razón de 500 VA cada uno.				
Tomacorrientes para uso especial	3300 VA por cada circuito.					

Tabla 4.15 – Demanda de máxima potencia simultánea

Finalmente, para determinar la cantidad de circuitos necesarios para el proyecto, es necesario designar el tablero principal y los tableros seccionales, para este proyecto serán:

- Tablero seccional general 1 (TSG1): ubicado en la oficina y alimentará la isla compuesta por el sector de oficinas, recepción, cocina, baños y pasillo del taller
- Tablero seccional general 2 (TSG2): ubicado en el sector taller y alimentará el sector taller (menos el pasillo), y el sector estética vehicular.
- Tableros principales: ubicados en la oficina, un tablero principal tetrapolar para el sector taller y estética vehicular y el segundo monofásico para alimentar el sector oficina y aledaños. Véase pág. 70.

En la Tabla 4.16 y Tabla 4.17se detallan los tableros seccionales y sus circuitos:

Ambiente	Tal	olero Seccional Gene	ral 1				
Ambiente	IUG 1	TUG 1	TUE 1				
Baño 1	1	1	-				
Baño 2	1	1	-				
Cocina	2	4	2				
Oficina	2	4	1				
Pasillo	4	2	-				
Sala de espera	2	2	1				
Total, bocas	12	14	4				
DPMS por circuito (VA)	1800	2200	3300				
DPMS para Gr. Electr.		7300 VA					
DPMS cargas Específicas		0					
Cargas TS1	Cargas TS1 7300						
Coef. de simultaneidad		0,7					
DPMS TS1	5110 VA						

Tabla 4.16 - Circuitos del tablero seccional general 1

Conton				Table	ero Secci	ional Ge	neral 2			
Sector	IUG2	IUG3	IUG4	IUG5	TUG2	TUG3	TUG4	TUE2	TUE3	1
Taller	15	15	10		12	12	6	12	3	1
Estética Vehicular			5	15			6		5	
Total bocas	15	15	15	15	12	12	12	10	10	1
DPMS por circuito (VA)	2250	2250	2250	2250	2200	2200	2200	3300	3300	10000
DPMS para Gr.Electr.					222	00 VA				
DPMS cargas Específicas					100	00 VA				
Cargas TS2					322	00 VA				
Coef. de simultaneidad					(0,7				
DPMS TS2					225	40 VA				

Tabla 4.17 – Circuitos del tablero seccional general 2

La demanda de potencia máxima es de:

$$DMPS = 5110 VA + 22540 VA = 27650 VA$$

El diagrama unifilar de los circuitos se presenta en el anexo 4

4.3.2 Determinación de la corriente de los circuitos y máxima por fase (IB)

Una vez hallado el valor de la potencia de cada circuito, y sabiendo su tensión de alimentación, se calcula la intensidad de corriente que circula por los conductores.

Para circuitos monofásicos, la intensidad de corriente se calcula mediante la Ecuación 4.2:

$$I_B = \frac{S}{U}$$

Ecuación 4.2 - Cálculo de la intensidad de corriente en circuitos monofásicos

Dónde:

- I_B es la intensidad de corriente del circuito [A]
- S es la potencia demandada [VA]
- U es la tensión de alimentación monofásica [V]

Para circuitos trifásicos, la intensidad de corriente se calcula mediante la Ecuación 4.3:

$$I_B = \frac{S}{\sqrt{3} * U}$$

Ecuación 4.3 - Cálculo de la intensidad de corriente en circuitos trifásicos

Dónde:

- I_B es la intensidad de corriente [A].
- S es la potencia demandada [VA].
- U es la tensión de alimentación trifásica [380 V].

Teniendo los valores de corriente para cada uno de los circuitos, se hace la distribución de estos en cada una de las 3 fases, afectando a cada una por su correspondiente factor de simultaneidad y se halla la corriente total en cada fase.

Tablero		TS1		TS2					TP					
Circuito	IUG1	TUG1	TUE1	IUG 2	IUG 3	IUG 4	IUG 5	TUG 2	TUG 3	TUG 4	TUE 2	TUE 3	ACU	
Fase Utilizada	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1, L2, L3	
DMPS (VA)	1800	2200	3300	2250	2250	2250	2250	2200	2200	2200	3300	3300	10000	
Un (V)	220	220	220	220	220	220	220	220	220	220	220	220	380	
IB (A)	8,2	10	15	10,2	10,2	10,2	10,2	10	10	10	15	15	15,2	
Línea más desfavorable		L3 = 15 A	ı					L2=L3=!	50,4 A					L3=65,4 A

Tabla 4.18 - Corriente en cada fase

Finalmente, se calcula la corriente IB, teniendo en cuenta los valores obtenidos en las tablas Tabla 4.16 y Tabla 4.17. $5110 \, VA + 22540 \, VA = 27650 \, VA$

Entonces para el tablero principal (TP):

$$I_B = \frac{27650 \, VA}{\sqrt{3} * 380 V} = 42 \, A$$

Para el tablero seccional 1 (TS1):

$$I_B = \frac{5110 \, VA}{\sqrt{3} * 380V} = 7.76 \, A$$

Para el tablero seccional 2 (TS2):

$$I_B = \frac{22540 \, VA}{\sqrt{3} * 380V} = 34.24 \, A$$

4.3.3 Selección del conductor a partir de su corriente máxima admisible (IZ)

Conociendo la corriente más desfavorable por fase de cada circuito (IB), se procede a seleccionar un conductor de la Tabla 4.19:

Tabla 771.16.I - Intensidad de corriente admisible [A], para temperatura ambiente de cálculo de 40 °C

	Termoplástico							
	PVC / LS0H IRAM NM 247-3 / IRAM 62267 B52-2 B1	PVC / LS0H IRAM NM 247-3 IRAM 62267 B52-4 B1						
Cobre [mm²]	2x	3x						
1,5	15	14						
2,5	21	18						
4	28	25						
6	36	32						
10	50	44						
16	66	59						
25	88	77						
35	109	96						
50	131	117						
70	167	149						
95	202	180						
120	234	208						
150	261	228						
185	297	258						
240	348	301						
300	398	343						

En la tabla se deben considerar las siguientes referencias: 2x = 2 conductores cargados + PE

3x = 3 conductores cargados + N + PE (ver nota 3)

Tabla 4.19 - Intensidades de corriente admisibles en Amper para una temperatura ambiente de 40ºC

Utilizando conductores de cobre, con aislación de PVC bajo norma IRAM 247-3, seleccionando 2x para los circuitos monofásicos (IUG, TUG, TUE) y 3x para los circuitos y tableros tetrapolares (ACU, TP); se obtienen las corrientes admisibles (I_{adm}).

A continuación, se determina la corriente máxima admisible (Iz), mediante la Ecuación 4.4:

$$I_Z = I_{adm} * F_t * F_a$$

Ecuación 4.4 – cálculo de la corriente máxima admisible del conductor

Donde:

- Iz es la corriente máxima admisible (A)
- ladm es la corriente admisible (A)
- Ft es el factor de corrección por temperatura ambiente (Tabla 4.20)
- Fa es el factor de corrección por agrupamiento de conductores (Tabla 4.21)

Tabla 771.16.II.a - Factor de corrección por temperatura ambiente distinta de 40 °C

Temperatura ambiente [°C]	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
PVC	1,4	1,34	1,29	1,22	1,15	1,08	1	0,91	0,82	0,7	0,57				
XLPE / EPR	1,26	1,23	1,19	1,14	1,1	1,05	1	0,96	0,9	0,84	0,78	0,71	0,64	0,55	0,45

Nota: Esta tabla está basada en la Tabla B52-14 del Capítulo 52 de esta Reglamentación.

Tabla 4.20 – factores de corrección para distintas temperaturas ambiente

Tabla 771.16.II.b - Factor de corrección por agrupamiento de circuitos en un mismo caño

Circuitos en un mismo caño	o número de conductores cargados	Factor	Se aplica a Tabla 771.16.I
2 monofásicos	Hasta 4	0,80	Columna 1
3 monofásicos	Hasta 6	0,70	Columna 1
2 trifásicos	Hasta 6	0,80	Columna 2
3 trifásicos	Hasta 9	0,70	Columna 2

Tabla 4.21 – factores de agrupamiento para más de un circuito

Para el proyecto, se utilizará un factor de corrección para una temperatura de 40ºC, entonces:

$$F_t = 1$$

Con respecto al factor de agrupamiento, cada circuito tendrá su canalización individual, por lo tanto:

$$F_a = 1$$

Finalmente, se debe verificar que la corriente por fase de cada circuito sea menor o igual que la corriente máxima admisible (Ecuación 4.5)

$$I_R \leq I_Z$$

Ecuación 4.5 – Relación entre la corriente por fase de cada circuito y la corriente máxima admisible

A modo de ejemplo de cálculo:

Para el tablero principal IB=42 A, se selecciona de la Tabla 4.19un conductor de cobre de 16 mm², con ladm de 59 A, luego

$$I_Z = 59 A * 1 * 1 = 59 A$$

Entonces se cumple la Ecuación 4.5

El cálculo de los demás conductores se resume en la

Circuito/Tablero	IB	Tipo	Norma	Sección (mm2)	IADM	ΙZ	IB <iz?< th=""></iz?<>
TP	42	3x	IRAM NM 247-3	16	59	59	Si
TS1	7.76	3x	IRAM NM 247-3	4	25	25	Si
TS2	34.24	3x	IRAM NM 247-3	10	44	44	Si
IUG1	8.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG2	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG3	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG4	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG5	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
TUG1	10	2x	IRAM NM 247-3	2.5	21	21	Si
TUG2	10	2x	IRAM NM 247-3	2.5	21	21	Si
TUG3	10	2x	IRAM NM 247-3	2.5	21	21	Si
TUG4	10	2x	IRAM NM 247-3	2.5	21	21	Si
TUE1	15	2x	IRAM NM 247-3	2.5	21	21	Si
TUE2	15	2x	IRAM NM 247-3	2.5	21	21	Si
TUE3	15	2x	IRAM NM 247-3	2.5	21	21	Si
ACU	15.2	3x	IRAM NM 247-3	2.5	18	18	Si

Tabla 4.22, en donde se cumple que (IB<IZ):

Circuito/Tablero	IB	Tipo	Norma	Sección (mm2)	I _{ADM}	ΙZ	IB <iz?< th=""></iz?<>
TP	42	3x	IRAM NM 247-3	16	59	59	Si
TS1	7.76	3x	IRAM NM 247-3	4	25	25	Si
TS2	34.24	3x	IRAM NM 247-3	10	44	44	Si
IUG1	8.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG2	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG3	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG4	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
IUG5	10.2	2x	IRAM NM 247-3	2.5	21	21	Si
TUG1	10	2x	IRAM NM 247-3	2.5	21	21	Si

TUG2	10	2x	IRAM NM 247-3	2.5	21	21	Si
TUG3	10	2x	IRAM NM 247-3	2.5	21	21	Si
TUG4	10	2x	IRAM NM 247-3	2.5	21	21	Si
TUE1	15	2x	IRAM NM 247-3	2.5	21	21	Si
TUE2	15	2x	IRAM NM 247-3	2.5	21	21	Si
TUE3	15	2x	IRAM NM 247-3	2.5	21	21	Si
ACU	15.2	3x	IRAM NM 247-3	2.5	18	18	Si

Tabla 4.22 – cálculo de los conductores y su verificación

En la Tabla 4.2 de la memoria técnica se proporciona más información de los conductores empleados.

4.3.4 Elección de la corriente asignada de los dispositivos de protección In La corriente de los dispositivos de protección, debe cumplir con la Ecuación 4.6:

$$I_B \le I_n \le I_Z$$

Ecuación 4.6 – relación de corrientes para la selección de dispositivos de protección

Donde

- IB es la corriente máxima por fase del circuito
- In es la corriente nominal del elemento de protección
- IZ es la corriente máxima admisible del conductor

A modo de ejemplo, para el tablero principal

- IB=42 A
- IZ=59 A

Entonces, se deberá elegir un dispositivo de protección tal que:

$$42A \le I_n \le 59A$$

Se procede a seleccionar un interruptor Automático Termomagnético modelo "Easy 9" del fabricante Schneider con In=50 A, y un interruptor diferencial modelo "Acti iID" del mismo fabricante, también con In=50 A y una sensibilidad de 300 mA y selectivo (S). Los mismos se detallan en la memoria técnica.

Los demás cálculos de protecciones se detallan en la

Circuito/Tablero	IB	IZ	In
ТР	42	59	50
TS1	7.76	25	20
TS2	34.24	44	40
IUG1	8.2	21	16
IUG2	10.2	21	16
IUG3	10.2	21	16
IUG4	10.2	21	16
IUG5	10.2	21	16
TUG1	10	21	16

TUG2	10	21	16
TUG3	10	21	16
TUG4	10	21	16
TUE1	15	21	16
TUE2	15	21	16
TUE3	15	21	16
ACU	15.2	18	16

Tabla 4.23:

Circuito/Tablero	I _B	Iz	I _n
TP	42	59	50
TS1	7.76	25	20
TS2	34.24	44	40
IUG1	8.2	21	16
IUG2	10.2	21	16
IUG3	10.2	21	16
IUG4	10.2	21	16
IUG5	10.2	21	16
TUG1	10	21	16
TUG2	10	21	16
TUG3	10	21	16
TUG4	10	21	16
TUE1	15	21	16
TUE2	15	21	16
TUE3	15	21	16
ACU	15.2	18	16

Tabla 4.23 – cálculo de protecciones y su verificación

Como puede apreciarse, se cumple para todos los casos la Ecuación 4.6 y también con la Tabla 4.12(apartado máximo calibre de protección)

Las propiedades de los interruptores termomagnéticos seleccionados se detallan en la Tabla 4.4, análogamente los interruptores diferenciales se detallen en la Tabla 4.5

4.3.5 Verificación de la protección por sobrecarga

Para la verificación de la protección por sobrecarga debe cumplir con la Ecuación 4.7

$$I_2 \le 1,45 * I_Z$$

Con

 $I_2 = 1.45*I_n \ , para \ I_n \leq 63A \ (tiempo \ convencional: 1 \ hora)$

 $I_2 = 1.45 * I_n$, para $I_n > 63A$ (tiempo convencional: 2 horas)

Ecuación 4.7 – Verificación de la protección por sobrecarga

Donde:

- 12 es la intensidad de corriente de operación o disparo seguro de los interruptores automáticos conforme a IEC 60898
- In es la corriente nominal del elemento de protección
- IZ es la corriente máxima admisible del conductor

A modo de ejemplo, para el tablero principal

- In=50 A
- Iz=59 A
- $I_2 = 1.45 * 50A = 72.5 A$, para $I_n > 63A$ (tiempo convencional: 2 horas)

Luego

$$72.5 A \le 1,45 * 59 A \rightarrow 72.5A \le 85.55A$$

Entonces verifica la Ecuación 4.7.

Las demás verificaciones se resumen en la Tabla 4.24

Circuito/Tablero	l _Β	lz	I _n	l ₂	1.45*I _z	2<1.45* _z
TP	42	59	50	72.5	85.55	Si
TS1	7.76	25	20	29	36.25	Si
TS2	34.24	44	40	58	63.8	Si
IUG1	8.2	21	16	23.2	30.45	Si
IUG2	10.2	21	16	23.2	30.45	Si
IUG3	10.2	21	16	23.2	30.45	Si
IUG4	10.2	21	16	23.2	30.45	Si
IUG5	10.2	21	16	23.2	30.45	Si
TUG1	10	21	16	23.2	30.45	Si
TUG2	10	21	16	23.2	30.45	Si
TUG3	10	21	16	23.2	30.45	Si
TUG4	10	21	16	23.2	30.45	Si
TUE1	15	21	16	23.2	30.45	Si
TUE2	15	21	16	23.2	30.45	Si
TUE3	15	21	16	23.2	30.45	Si
ACU	15.2	18	16	23.2	26.1	Si

Tabla 4.24 – verificación de la protección por sobrecarga

4.3.6 Determinación de la corriente de cortocircuito (I"K)

Los circuitos seccionales y terminales son verificados frente a las corrientes de cortocircuito mínima, de manera de comprobar que la corriente de cortocircuito sea suficiente para que el dispositivo de protección desconecte en forma instantánea.

Para hallar la corriente de cortocircuito, se emplea la Ecuación 4.8:

$$I''_{K} = \frac{c * U_{n}}{\sqrt{3} * Z_{K}} con Z_{K} = \sqrt{R_{K}^{2} + X_{K}^{2}}$$

Ecuación 4.8 - Corriente de cortocircuito

Donde:

- c es el factor de tensión (1.05 aguas abajo del transformador y aguas abajo del tablero principal)
- U_n es la tensión nominal del sistema en el punto de defecto (380V)
- Z_K es la impedancia de cortocircuito (Ω)
- R_K es la resistencia de cortocircuito (Ω)
- X_K es la reactancia de cortocircuito (Ω)

Como primera medida se debe determinar la corriente máxima de cortocircuito prevista por el transformador de distribución. Sabiendo que la potencia del mismo es de 315 kVA, de la Tabla 4.25se obtiene l''k:

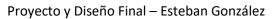
Tabla 771-H.II - Valores de las máximas corrientes presuntas de cortocircuito previstas para los transformadores de distribución

$S_{rT}[kVA]$	$I_k^*[kA]$
100	3,568
200	7,074
315	11,028
400	13,899
500	17,229
630	21,458
800	21,768
1000	26,838
1250	27,876

Tabla 4.25 - Corrientes máximas de cortocircuito previstas para los transformadores de distribución

Entonces:

$$I''_{K-trafo} = 11028 A$$


Los tipos de cable utilizados en cada tramo, su disposición y longitud se detallan en la Tabla 4.26

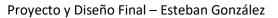
Tramo	Disposición	Material del conductor	Conductor	Norma	Longitud (m)
Transformador- Bajada TP	Aéreo (Preensamblado)	Aluminio	3x95/50 mm ²	IRAM 2263	70
Bajada TP- Medidor	Subterráneo	Cobre	3x50/25 mm ²	IRAM 2178	14
Medidor – TP	Caño a la vista	Cobre	4x (1x16 mm²) + PE (16mm²)	IRAM NM 247-3	2
TP-TS1	Caño a la vista	Cobre	4x(1x4) + PE (4 mm²)	IRAM NM 247-3	2,7
TP-TS2	Caño a la vista	Cobre	4x (1x10 mm ²) + PE (10mm ²)	IRAM NM 247-3	25

Tabla 4.26 – características de los conductores de los distintos tramos

La corriente de cortocircuito aguas abajo del tramo que va desde el transformador a la bajada del tablero principal se obtiene utilizando la Tabla 4.27:

Sección del conductor [mm²]				Lo	ngitud	del co	nduct	or IRA	M 2263	3 - AI [m]			
3 x 25 / 50	2,7	4,1	5,5	6,9	8,2	9,6	11,0	12,4	13,7	16,5	19,2	22,0	24,7	27,5
3 x 35 / 50	2,7	4,1	5,5	6,8	8,2	9,6	11,0	12,3	13,7	16,4	19,2	21,9	24,6	27,4
3 x 50 / 50	5,1	7,7	10,2	12,8	15,3	17,9	20,4	23,0	25,5	30,6	35,7	40,8	45,9	51,0
3 x 70 / 50	7,3	11,0	14,7	18,3	22,0	25,6	29,3	33,0	36,6	44,0	51,3	58,6	65,9	73,
3 x 95 / 50	10	15	20	25	30	35	40	45	50	60	70	80	90	100
Nivel de corto- circuito aguas arriba [A]	0050	Γ 2204	T 0700						guas a			T 0445		T 200
3000	2858	2791	2728	2668	2610	2555	2502	2451	2402	2310	2224	2145	2071	200
5000	4617	4446	4288	4141	4003	3874	3753	3640	3533	3337	3162	3004	2862	273
6000	5456	5220	5003	4804	4619	4449	4290	4143	4005	3755	3535	3339	3163	300
7000	6271	5961	5680	5424	5190	4976	4778	4596	4427	4124	3860	3627	3421	323
9000	7830	7352	6929	6552	6214	5909	5633	5381	5151	4745	4399	4099	3838	360
11000	9301	8634	8057	7552	7106	6710	6356	6037	5749	5248	4828	4469	4160	389
13000	10692	9820	9080	8443	7890	7405	6976	6594	6252	5664	5177	4767	4418	411
15000	12009	10920	10012	9244	8585	8014	7514	7073	6680	6013	5467	5012	4627	429
19000	14443	12897	11649	10622	9761	9029	8400	7852	7372	6568	5922	5392	4949	457
	15570	13788	12372	11219	10263	9457	8769	8174	7654	6791	6103	5541	5074	468
21000					L					_				
26000	18160	15781	13952	12504	11328	10354	9534	8835	8231	7242	6464	5838	5322	489

Tabla 4.27 – Corrientes de cortocircuito aguas abajo


Sabiendo que el cable es 3x95/50, el tramo tiene un largo de 70 metros y que l''k aguas arriba es 11028 A se obtiene

$$I''_K = 4832.89 A$$

La corriente aguas abajo del tramo de la bajada al tablero principal se obtiene de la Tabla 4.28:

Corrientes máximas 🖙 cortocircuito aguas abajo, con conductores IRAM 2263 - Aluminio

Sección del conductor [mm²]	Longitud del cable IRAM 2178 - Cobre [m]													
4 x 4	0,6	8,0	1,1	1,4	1,7	1,9	2,2	2,5	2,8	3,3	3,9	4,4	5,0	5,6
4 x 6	0,8	1,3	1,7	2,1	2,5	2,9	3,3	3,8	4,2	5,0	5,8	6,7	7,5	8,3
4 x 10	1,4	2,2	2,9	3,6	4,3	5,0	5,7	6,5	7,2	8,6	10,1	11,5	12,9	14,4
4 x 16	2,3	3,4	4,5	5,7	6,8	7,9	9,1	10,2	11,3	13,6	15,9	18,1	20,4	22,7
3 x 25 / 16	3,8	5,6	7,5	9,4	11,3	13,1	15,0	16,9	18,8	22,5	26,3	30,1	33,8	37,6
3 x 35 / 16	5,2	7,8	10,4	13,0	15,6	18,2	20,8	23,4	26,0	31,2	36,4	41,6	46,8	52,0
3 x 50 / 25	7,0	10,5	14,0	17,5	21,0	24,5	28,0	31,5	35,0	42,0	49,0	56,0	63,0	70,0
3 x 70 / 35	10	15	20	25	30	35	40	45	50	60	70	80	90	100
3000 5000	2877 4666	2819	2763	2709	2658	2608	2561	2515	2470	2386	2307	2234	2165	2100
circuito aguas arriba [A]				Co	rriente	de co	rtociro	cuito a	guas a	bajo [A]			
5000	4666			1010	-									
		4516	4375	4242	4117	3999	3888	3783	3684	3499	3333	3181	3043	2916
6000	5526	4516 5316	5121	4941	4117	3999 4615	3888 4467	3783 4329	3684 4199	3499 3961	3333 3749	3181 3558	3043 3386	2916 3230
7000	5526 6363	20015	1233	1000000	000000	355	2260	200	2000	SECTION .		100000	- ***	
	22,07,945	5316	5121	4941	4772	4615	4467	4329	4199	3961	3749	3558	3386	3230
7000	6363	5316 6086	5121 5833	4941 5599	4772 5384	4615 5184	4467 4999	4329 4826	4199 4666	3961 4374	3749 4116	3558 3888	3386 3683	3230 3499
7000	6363 7974	5316 6086 7544	5121 5833 7158	4941 5599 6810	4772 5384 6494	4615 5184 6205	4467 4999 5942	4329 4826 5700	4199 4666 5477	3961 4374 5079	3749 4116 4735	3558 3888 4435	3386 3683 4171	3230 3499 3936
7000 9000 11000	6363 7974 9505	5316 6086 7544 8900	5121 5833 7158 8368	4941 5599 6810 7896	4772 5384 6494 7474	4615 5184 6205 7095	4467 4999 5942 6752	4329 4826 5700 6442	4199 4666 5477 6158	3961 4374 5079 5660	3749 4116 4735 5236	3558 3886 4435 4871	3386 3683 4171 4554	3230 3499 3936 4276
7000 9000 11000 13000	6363 7974 9505 10963	5316 6086 7544 8900 10166	5121 5833 7158 8368 9477	4941 5599 6810 7896 8876	4772 5384 6494 7474 8346	4615 5184 6205 7095 7877	4467 4999 5942 6752 7457	4329 4826 5700 6442 7079	4199 4666 5477 6158 6738	3961 4374 5079 5660 6146	3749 4116 4735 5236 5650	3558 3888 4435 4871 5228	3386 3683 4171 4554 4864	3230 3499 3936 4276 4548
7000 9000 11000 13000	6363 7974 9505 10963 12351	5316 6086 7544 8900 10166 11349	5121 5833 7158 8368 9477 10498	4941 5599 6810 7896 8876 9765	4772 5384 6494 7474 8346 9128	4615 5184 6205 7095 7877 8569	4467 4999 5942 6752 7457 8074	4329 4826 5700 6442 7079 7634	4199 4666 5477 6158 6738 7239	3961 4374 5079 5660 6146 6560	3749 4116 4735 5236 5650 5997	3558 3888 4435 4871 5228 5524	3386 3683 4171 4554 4864 5119	3230 3499 3936 4276 4548
7000 9000 11000 13000 15000	6363 7974 9505 10963 12351 14941	5316 6086 7544 8900 10166 11349 13500	5121 5833 7158 8368 9477 10498 12312	4941 5599 6810 7896 8876 9765	4772 5384 6494 7474 8346 9128 10469	4615 5184 6205 7095 7877 8569 9740	4467 4999 5942 6752 7457 8074 9106	4329 4826 5700 6442 7079 7634 8550	4199 4666 5477 6158 6738 7239 8057	3961 4374 5079 5660 6146 6560 7225	3749 4116 4735 5236 5650 5997 6549	3558 3888 4435 4871 5228 5524 5988	3386 3683 4171 4554 4864 5119 5516	3230 3499 3936 4276 4548 4770 5113

Tabla 4.28 – Corriente de cortocircuito aguas abajo (2)

Sabiendo que el cable es 3x50/25, el tramo tiene un largo de 14 metros y que l''k aguas arriba es 4832.89 A se obtiene:

$$I''_K = 4228.16 A$$

Para el cálculo de l''k debajo de los tableros seccionales, y entre el medidor y el tablero se utiliza la Tabla 4.29:

Corrientes máximas de cortocircuito aguas abajo, con conductores IRAM NM 247-3 - Cobre

Proyecto y Diseño Final – Esteban González

conductor [mm²]	Longitud del conductor IRAM NM 247-3 - Cobre [m]													
4	0,5	0,8	1,1	1,4	1,6	1,9	2,2	2,5	2,7	3,3	3,8	4,4	4,9	5,5
6	0,8	1,2	1,6	2,1	2,5	2,9	3,3	3,7	4,1	4,9	5,8	6,6	7,4	8,2
10	1,4	2,1	2,8	3,6	4,3	5,0	5,7	6,4	7,1	8,5	10,0	11,4	12,8	14,2
16	2,2	3,4	4,5	5,6	6,7	7,9	9,0	10,1	11,2	13,5	15,7	18,0	20,2	22,5
25	3,5	5,2	7,0	8,7	10,5	12,2	13,9	15,7	17,4	20,9	24,4	27,9	31,4	34,9
35	4,9	7,4	9,8	12,3	14,7	17,2	19,6	22,1	24,5	29,5	34,4	39,3	44,2	49,1
50	7,0	10,6	14,1	17,6	21,1	24,7	28,2	31,7	35,2	42,3	49,3	56,4	63,4	70,5
70	10	15	20	25	30	35	40	45	50	60	70	80	90	100
arriba [A]	2007	0045	2000	,					guas a			2005	0075	201
1 A 1 edime									3					
arriba [A]	2897	2849	2802	2756	2712	2669	2628	2588	2549	2474	2404	2338	2275	221
3550.72070070	2897 4721	2849 4593	2802 4472	,								2338	2275 3265	2215
3000 5000	4721	4593	4472	2756 4357	2712 4248	2669 4144	2628 4045	2588 3950	2549 3860	2474 3692	2404 3538	3396	3265	314
3000 5000 6000	4721 5603	4593 5424	4472 5255	2756 4357 5097	2712 4248 4948	2669 4144 4808	2628 4045 4675	2588 3950 4550	2549 3860 4431	2474 3692 4210	2404 3538 4011	3396 3830	3265 3664	314
3000 5000	4721	4593	4472	2756 4357	2712 4248	2669 4144	2628 4045	2588 3950	2549 3860	2474 3692	2404 3538	3396	3265	314
3000 5000 6000	4721 5603	4593 5424	4472 5255	2756 4357 5097	2712 4248 4948	2669 4144 4808	2628 4045 4675	2588 3950 4550	2549 3860 4431	2474 3692 4210	2404 3538 4011	3396 3830	3265 3664	3144 3512 3832
3000 5000 6000 7000	4721 5603 6466	4593 5424 6228	4472 5255 6007	2756 4357 5097 5801	2712 4248 4948 5609	2669 4144 4808 5429	2628 4045 4675 5261	2588 3950 4550 5102	2549 3860 4431 4953	2474 3692 4210 4679	2404 3538 4011 4434	3396 3830 4214	3265 3664 4014	3144 351; 383; 436;
3000 5000 6000 7000 9000	4721 5603 6466 8135	4593 5424 6228 7763	4472 5255 6007 7422	2756 4357 5097 5801 7111	2712 4248 4948 5609 6824	2669 4144 4808 5429 6560	2628 4045 4675 5261 6315	2588 3950 4550 5102 6088	2549 3860 4431 4953 5877	2474 3692 4210 4679 5496	2404 3538 4011 4434 5161	3396 3830 4214 4865	3265 3664 4014 4600	3144 3512 3832 4363 4785
3000 5000 6000 7000 9000	4721 5603 6466 8135 9736	4593 5424 6228 7763 9206	4472 5255 6007 7422 8732	2756 4357 5097 5801 7111 8304	2712 4248 4948 5609 6824 7916	2669 4144 4808 5429 6560 7562	2628 4045 4675 5261 6315 7239	2588 3950 4550 5102 6088 6942	2549 3860 4431 4953 5877 6669	2474 3692 4210 4679 5496 6182	2404 3538 4011 4434 5161 5762	3396 3830 4214 4865 5395	3265 3664 4014 4600 5072	3144 3512 3832 4363 4785 5128
3000 5000 6000 7000 9000 11000	4721 5603 6466 8135 9736 11270	4593 5424 6228 7763 9206 10567	4472 5255 6007 7422 8732 9946	2756 4357 5097 5801 7111 8304 9395	2712 4248 4948 5609 6824 7916	2669 4144 4808 5429 6560 7562 8457	2628 4045 4675 5261 6315 7239 8055	2588 3950 4550 5102 6088 6942 7689	2549 3860 4431 4953 5877 6669 7355	2474 3692 4210 4679 5496 6182 6767	2404 3538 4011 4434 5161 5762 6267	3396 3830 4214 4865 5395 5835	3265 3664 4014 4600 5072 5459	1,000,000
3000 5000 6000 7000 9000 11000 13000	4721 5603 6466 8135 9736 11270 12743	4593 5424 6228 7763 9206 10567 11851	4472 5255 6007 7422 8732 9946 11076	2756 4357 5097 5801 7111 8304 9395	2712 4248 4948 5609 6824 7916 8901 9795	2669 4144 4808 5429 6560 7562 8457 9260	2628 4045 4675 5261 6315 7239 8055 8780	2588 3950 4550 5102 6088 6942 7689 8347	2549 3860 4431 4953 5877 6669 7355 7955	2474 3692 4210 4679 5496 6182 6767 7272	2404 3538 4011 4434 5161 5762 6267 6697	3396 3830 4214 4865 5395 5835 6206	3265 3664 4014 4600 5072 5459 5783	3144 3513 3833 4363 4785 5126 5413
3000 5000 6000 7000 9000 11000 13000 15000	4721 5603 6466 8135 9736 11270 12743	4593 5424 6228 7763 9206 10567 11851 14216	4472 5255 6007 7422 8732 9946 11076 13115	2756 4357 5097 5801 7111 8304 9395 10397 12173	2712 4248 4948 5609 6824 7916 8901 9795 11357	2669 4144 4808 5429 6560 7562 8457 9260 10643	2628 4045 4675 5261 6315 7239 8055 8780 10014	2588 3950 4550 5102 6088 6942 7689 8347 9455	2549 3860 4431 4953 5877 6669 7355 7955	2474 3692 4210 4679 5496 6182 6767 7272 8099	2404 3538 4011 4434 5161 5762 6267 6697 7392	3396 3830 4214 4865 5395 5835 6206 6798	3265 3664 4014 4600 5072 5459 5783 6293	3144 351; 383; 436; 478; 512; 541;

Tabla 4.29 – corriente de cortocircuito aguas abajo (3)

Finalmente, la corriente de cortocircuito aguas abajo del tablero principal se obtiene sabiendo que el cable esIRAM NM 247-3 de 16mm2y 2.2 metros de longitud, se obtiene:

$$I''_{K-TP} = 4028 A$$

Sabiendo que la corriente de cortocircuito aguas arriba de cada tablero es de 4028.16A, los conductores utilizados son IRAM 247-3, la longitud del tramo TP-TS1 es de 3,3 metros y su sección es de 4 mm2, se obtiene

$$I''_{K-TP/TS1} = 3100 A$$

Sabiendo que la corriente de cortocircuito aguas arriba de cada tablero es de 4028A, los conductores utilizados son IRAM 247-3, la longitud del tramo TP-TS2 es de 25 metros y su sección es de 10 mm2, se obtiene

$$I^{\prime\prime}_{K-TP/TS2} = 2692 \, kA$$

Las corrientes de cortocircuito aguas debajo de cada tablero se resumen en la tabla:

Tablero	I"K (A)	Poder de corte asignado (A)
Principal (TP)	4028	4500
Seccional 1 (TS1)	3100	4500
Seccional 2 (TS2)	2692	3000

Tabla 4.30 – Corrientes de cortocircuito de cada tablero

4.3.7 Verificación por máxima exigencia térmica

Para garantizar la protección de los conductores, sean de circuitos seccionales o terminales, se debe cumplir la condición que se establece a continuación, en función del elemento de protección seleccionado.

Tratándose en este caso de dispositivos de protección que presentan características de limitación de la corriente de cortocircuito, la protección de los conductores queda asegurada si se cumple la siguiente expresión

$$k^2 * S^2 > I^2 * t$$

Ecuación 4.9 – verificación por máxima exigencia térmica

Dónde:

- $I^2 * t$ es lamáxima energía específica pasante aguas abajo del dispositivo de protección (para los interruptores automáticos fabricados según la norma IEC 60898 este dato no se calcula, ya que es un valor garantizado por el fabricante).
- S es la sección nominal del conductor [mm2].
- k es el factor que toma en cuenta la resistividad, el coeficiente de temperatura y la capacidad térmica volumétrica del conductor, y las temperaturas inicial y final del mismo.

El valor de k se obtiene de la Tabla:

Tabla 771.19.II - Valores de k para los conductores de línea

	UT			k		2000		
Aislación de los		PVC ≤	PVC >	EPR/XLPE	Goma 60 °C	Mineral		
cond	ductores	300 mm ²	300 mm ²			PVC	Desnudo	
Tempera	tura inicial °C	70	70	90	60	70	105	
Tempera	atura final °C	160	140	250	200	160	250	
	Cobre	115	103	143	141	115	135 / 115ª	
	Aluminio	76	68	94	93	-	93	
Material conductor	Uniones estañadas en conductor de cobre	115	-	_	-	L es	-	

Tabla 4.31 – valores de k para conductores de línea

Sabiendo que todos los conductores son de cobre, con aislación de PVC y sección inferior a 300 mm2, se obtiene que

$$k = 115 \frac{A^2 * s}{mm^2}$$

El valor de $I^2 * t$ es función de la corriente nominal, la clase y del poder de corte asignado de los pequeños interruptores automáticos utilizados y se obtiene de las tablas Tabla 4.32 y Tabla 4.33, así como también de los folletos de los fabricantes (Gráfico 4.1).

Tabla 771-H.IX - Para pequeños interruptores automáticos de hasta 16 A

	Clases de limitaciones de energía								
Poder de corte	Clase 1	Cla	se 2	Clase 3					
asignado	I^{2} . t máx.	I^2 , t máx.							
[A]	[A² s]	[A	s]	[A ² s]					
	Tipos B y C	Tipo B	Tipo C	Tipo B	Tipo C				
3000		31 000	37 000	15 000	18 000				
4500	Sin límite	60 000	75 000	25 000	30 000				
6000	especificado	100 000	120 000	35 000	42 000				
10000		240 000	290 000	70 000	84 000				

Tabla 4.32 - clases de limitacion de energia para P.I.A de hasta 16A

Tabla 771-H.X - Para pequeños interruptores automáticos de 16 A < In ≤ 32 A

1	Clases de limitaciones de energía								
Poder de corte	1		2		3				
asignado [A]	I^2 . t máx. [A 2 s]	<i>I</i> ² . <i>t</i>	máx.	I^2 , t máx [A 2 s]					
	Tipos B y C	Tipo B	Tipo C	Tipo B	Tipo C				
3000		40 000	50 000	18 000	22 000				
4500	Sin limite	80 000	100 000	32 000	39 000				
6000	Especificado	130 000	160 000	45 000	55 000				
10000		310 000	370 000	90 000	110 000				

Nota:

Las clases de limitación de energia pueden encontrarse indicadas en los interruptores automáticos conformes a la Norma EN 60898 mediante un número indicativo de la clase encerrado en un cuadrado. Ejemplo:

3

Tabla 4.33 – clases de limitacion de energia para P.I.A de 16 A hasta 32 A

Para los pequeños interruptores automáticos, con corriente nominal superior a 32 A, se utilizará la curva de limitación provista por el fabricante.

Para el tablero principal (TP) y el tablero seccional general 2 (TS2) se utilizara la línea "Acti 9", modelo "iC 60N" del fabricante Schneider, cuya curva de limitación se obtiene del Gráfico 4.1

Curvas de limitación para redes monofásicas de 230 V o redes trifásicas de 400 V (sistema de conexión a tierra TN o TT)

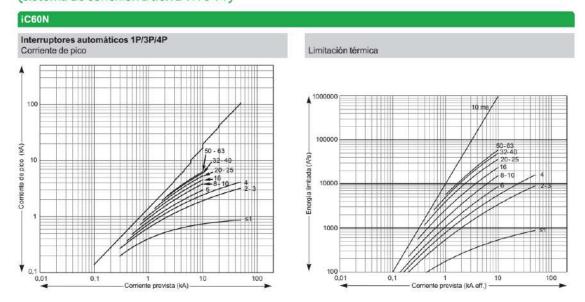


Gráfico 4.1 - curvas de limitación para pequeños interruptores automáticos, modelo "Easy 9", código

Circuito	In (A)	Poder de corte (A)	Clase	S(mm ²)	$k \left(\frac{A^2 * s}{mm^2}\right)$	S ² .k ² (A ² s)	I ² .t (A ² s)	$k^2 * S^2 \ge I^2 * t$
TP	50	4500	3	16	115	3385600	45000	Si
TS1	20	4500	3	4	115	211600	39000	Si
TS2	40	3000	3	10	115	1322500	20000	Si
IUG1	16	3000	3	2.5	115	82656.25	18000	Si
IUG2	16	3000	3	2.5	115	82656.25	18000	Si
IUG3	16	3000	3	2.5	115	82656.25	18000	Si
IUG4	16	3000	3	2.5	115	82656.25	18000	Si
IUG5	16	3000	3	2.5	115	82656.25	18000	Si
TUG1	16	3000	3	2.5	115	82656.25	18000	Si
TUG2	16	3000	3	2.5	115	82656.25	18000	Si
TUG3	16	3000	3	2.5	115	82656.25	18000	Si
TUG4	16	3000	3	2.5	115	82656.25	18000	Si
TUE1	16	3000	3	2.5	115	82656.25	18000	Si
TUE2	16	3000	3	2.5	115	82656.25	18000	Si
TUE3	16	3000	3	2.5	115	82656.25	18000	Si
ACU	20	3000	3	2.5	115	82656.25	18000	Si

Tabla 4.34 – Verificación por máxima exigencia térmica

4.3.8 Verificación de la actuación de la protección por corriente mínima de cortocircuito

Para la verificación de la actuación de la protección por corriente mínima de cortocircuito, para el tablero principal y los circuitos seccionales, que poseen curvas tipo C, se utiliza la siguiente relación:

$$10 * I_n \leq Icc$$

Ecuación 4.10 – Verificación por corriente mínima de cortocircuito para dispositivos clase C

Donde:

- $10 * I_n$ proviene de utilizar un dispositivo de protección con curva C
- *Icc* es la corriente de cortocircuito (l''K)

Para el tablero principal, sabiendo que In=50 A, curva C, clase 3 se obtiene

$$500A \le 4028 A$$

Verifica.

Para el tablero seccional 1 (TS1), se tiene una sección de conductor de 4 mm2 y una protección de In=20 A, curva C, clase 3; no es posible utilizar la tabla. Por lo cual se procede a verificar con la Ecuación 4.10:

$$200A \le 3362 A$$

Verifica.

Para el tablero seccional 1 (TS2), se tiene una sección de conductor de 16 mm2 y una protección de In=63 A, curva C, clase 3; no es posible utilizar la tabla. Por lo cual se procede a verificar con la Ecuación 4.10:

$$400A \le 2692.6 A$$

Verifica.

Para la verificación por corriente de cortocircuito mínima de los circuitos terminales, se utiliza la tabla ¡Error! No se encuentra el origen de la referencia., los resultados se muestran en la tabla 4.36.

Tabla 771-H.VIII
Conductores con aislación termoplástica

C		e cortoci secciona	ircuito en al [A]		1500	3000	4000	5000	6000	7000	8000	9000	10000
Sección Cu	fusible		asignada iptor auto						* 10000-0000				
[mm²]	IRAM 2245 o IEC 60269	IRAM 2169	IEC 60898	Tipo curva	Longiti	ıd maxir	na de los	U.	[m]				
	10				69	72	73	73	74	74	74	74	74
1,5				В	160	163	163	164	164	164	164	164	165
1,5	9 9	10	10	С	77	80	81	81	81	81	82	82	82
		Water and the same of the same		D	36	38	39	40	40	40	40	40	40
	16		-		96	101	102	103	104	104	104	104	105
2,5	7	1		В	163	167	169	169	170	170	170	171	17
2,0		16	16	С	77	81	83	83	84	84	84	85	85
					33	38	39	40	41	41	41	41	42
SHEET.	25				59	66	68	69	70	71	71	71	72
4		1	100 To 100 To	В	162	170	172	173	174	174	175	175	175
		25	25	C	73	81	83	84	85	86	86	86	. 87
			D	29	37	39	40	41	41	42	42	42	
				В	185	197	200	201	203	203	204	204	20
6		32	32	C	81	93	95	97	98	99	100	100	10
(%)		5389	1	D	29	40	43	45	46	47	48	48	49
	35				107	128	133	136	138	139	140	141	14:
10				В	248	268	273	276	278	279	280	281	283
10		40	40	С	104	124	129	132	134	135	136	137	13
		- UNAS	11950	D	32	52	57	60	62	63	64	65	66
	50				66	98	106	111	114	116	118	119	120
16			Name - Inc.	В	300	332	340	345	348	350	352	353	354
10		50	50	С	118	150	158	163	166	168	170	171	172
		6	1,000	D	27	59	67	72	75	77	79	80	81
	63				58	107	120	127	132	136	138	140	14
25	-		10 7	В	349	398	411	418	423	427	429	431	43
23		63	63	С	125	174	187	194	199	203	205	207	20
				D	13	63	75	82	87	91	93	95	97
	80				14	83	101	111	118	123	127	130	13.
35			Variable 1	В	357	427	444	455	462	467	470	473	47
33		-	80	С	109	179	196	206	213	218	222	225	22
				D	15	55	72	82	89	94	98	101	10:

Tabla 4.35 - Verificación de corriente de cortocircuito mínima para circuitos terminales (calculo)

Circuito	In	Tipo	Sección (mm²)	Clase	Poder de corte	Longitud	Longitud Max
IUG1	16	Terminal	2,5	С	3000	30	81
IUG2	16	Terminal	2,5	С	3000	20	81
IUG3	16	Terminal	2,5	С	3000	29	81
IUG4	16	Terminal	2,5	С	3000	29	81
IUG5	16	Terminal	2,5	С	3000	20	81
TUG1	16	Terminal	2,5	С	3000	30	81
TUG2	16	Terminal	2,5	С	3000	28	81
TUG3	16	Terminal	2,5	С	3000	30	81
TUG4	16	Terminal	2,5	С	3000	15	81
TUE1	16	Terminal	2,5	С	3000	25	81
TUE2	16	Terminal	2,5	С	3000	20	81
TUE3	16	Terminal	2,5	С	3000	20	81
ACU	20	Terminal	2,5	С	3000	20	-

Tabla 4.36 – Verificación de corriente de cortocircuito mínima para circuitos terminales (Resultados)

4.3.9 Verificación de la caída de tensión, mediante el método de GDC

La verificación de la caída de tensión se realiza mediante el método del gradiente de caída, utilizando la Ecuación 4.11:

$$\Delta U = GDC * \frac{I * L}{S} [V]$$

Ecuación 4.11 – Verificación de la caída de tensión mediante el método de GDC

Válida para conductores aislados según normas IRAM NM 247-3 y para cables según normas IRAM 2178 Y 62266 en cañerías o conductos, en aire o enterrados o dispuestos en tresbolillo. No válida para cables dispuestos en plano separados un diámetro.

Donde:

- I es la intensidad de corriente de línea (IB) en amperes.
- L es la longitud del circuito en metros.
- S es la sección nominal de los conductores en mm².
- GCD es el gradiente de caída, se obtiene de la tabla 4.37

	Gradiente de caída (GDC)				
Tipo de sistema	Carga común (cos φ) = 0,8				
	Cobre	Aluminio			
Monofásico	0,040	0,063			
Trifásico	0,035	0,055			

Tabla 4.37 - Valores del gradiente de caída

La verificación de la caída de tensión mediante el método de GDC se resume en la tabla 4.38:

Circuito - Tablero	Tipo de sistema	Material	GDC	ı	L	S	D U (V)	% Caída Parcial	% Caída Total
TP	Trifásico	Cobre	0.035	42	1.9	16	0.17	0.05	0.05
TS1	Trifásico	Cobre	0.035	7.76	3.3	4	0.22	0.06	0.10
TS2	Trifásico	Cobre	0.035	34.24	25	10	3.00	0.79	0.83
IUG1	Monofásico	Cobre	0.04	8.2	30	2.5	3.94	1.79	1.89
IUG2	Monofásico	Cobre	0.04	10.2	20	2.5	3.26	1.48	2.32
IUG3	Monofásico	Cobre	0.04	10.2	29	2.5	4.73	2.15	2.94
IUG4	Monofásico	Cobre	0.04	10.2	29	2.5	4.73	2.15	2.94
IUG5	Monofásico	Cobre	0.04	10.2	20	2.5	3.26	1.48	2.27
TUG1	Monofásico	Cobre	0.04	10	30	2.5	4.80	2.18	2.29
TUG2	Monofásico	Cobre	0.04	10	28	2.5	4.48	2.04	2.83
TUG3	Monofásico	Cobre	0.04	10	30	2.5	4.80	2.18	2.97
TUG4	Monofásico	Cobre	0.04	10	15	2.5	2.40	1.09	1.88
TUE1	Monofásico	Cobre	0.04	15	25	2.5	6.00	2.73	2.83
TUE2	Monofásico	Cobre	0.04	15	20	2.5	4.80	2.18	2.97
TUE3	Monofásico	Cobre	0.04	15	20	2.5	4.80	2.18	2.97
ACU	Trifásico	Cobre	0.035	15.2	20	2.5	4.256	1.12	1.91

Tabla 4.38 – Verificación de la caída de tensión (Cálculos)

Como puede apreciarse, la caída de tensión (desde el tablero principal hasta el final de cada circuito terminal) nunca supera el 3%.

4.3.10 Cálculo y selección de canalizaciones

Para el cálculo de las canalizaciones se consideró que la superficie ocupada por los cables no supere el 35% de la superficie interior de la canalización a utilizar, considerando una canalización por cada circuito teniendo en cuenta el caso más desfavorable de cada uno.

Para la selección de las canalizaciones se recurrió al folleto del fabricante TUBELECTRIC, de PVC, tipo semipesado, sus principales características se detallan en la Ilustración 4.1

Además de ofrecer la opción semipesado, el fabricante TUBELECTRIC ofrece la opción extra pesado, indicada para caños sujetos a esfuerzos (como por ejemplo caños en losa, caños enterrados, etc.)

En el proyecto todos los caños son a la vista, por lo tanto, no es necesario utilizar caños extra pesados.

La selección se realiza utilizando la tabla y los resultados se muestran en la tabla

Requerimientos normativos

MÁXIMA CANTIDAD DE CONDUCTORES A INSTALAR

Por aplicación de la Reglamentación para la Ejecución de Instalaciones **Eléctricas en Inmuebles AEA 90364**. Parte 7 - Año 2006/ 2008 y actualizaciones, la cantidad máxima de conductores a instalar en los tubos rigidos Tubelectrio[®], y como reemplazan de manera directa a los tubos de hierro se presenta la siguiente tabla comparativa y de selección:

Tubelectric* Tubos libres de halógenos EC 61386 IRAM 62386-4422	Tubelectric* Tubos PVC IEC 61286 IRAM 62386 EXTRAPESADOS 4321	Tubelectric* Tubos PVC IEC 61386 IRAM 62386 SEMIPESADOS 3321		Sección 2,5 mm²		Sección 6 mm²	Sección 10 mm²	Control of the Control	Radio minimo de Curvatura en mm	Distancia mínima entre curvas en mm
TR0016LH	TR0016EP	TR0016	4 + PE	3 + PE	2 + PE				48	160
TR0020LH	TR0020EP	TR0020	7 + PE	5 + PE	3 + PE	00/10/2000	-01/10/04	20,30,300	60	190
TR0022LH	TR0022EP	TR0022	9 + PE	6 + PE	4 + PE	2 + PE			67	222
TR0025LH	TR0025EP	TR0025	12 + PE	9 + PE	6 + PE	3 + PE	2 + PE	25 37 2000 25	75	254
TR0032LH	TR0032EP	TR0032		15 + PE	11 + PE	6 + PE	4 + PE	3 + PE	96	318
TR0040LH	TR0040EP	TR0040				11 + PE	7 + PE	5 + PE	115	381
TR0050LH	TR0050EP	TR0050				18 + PE	12 + PE	9 + PE	200	508

Tabla 4.39 – máxima cantidad de conductores a instalar

Circuito/Tablero	Sección (mm2)	Disposición (mm²)	Caño utilizado
TP	16	4x(1x16) + PE 16	TR0040
TS1	4	4x(1x4) + PE 4	TR0022
TS2	10	4x(1x10) + PE 10	TR0032
IUG1	2,5	2x (1x2.5) + PE 2.5	TR0020
IUG2	2,5	2x (1x2.5) + PE 2.5	TR0020
IUG3	2,5	2x (1x2.5) + PE 2.5	TR0020
IUG4	2,5	2x (1x2.5) + PE 2.5	TR0020
IUG5	2,5	2x (1x2.5) + PE 2.5	TR0020
TUG1	2,5	2x (1x2.5) + PE 2.5	TR0016
TUG2	2,5	2x (1x2.5) + PE 2.5	TR0016
TUG3	2,5	2x (1x2.5) + PE 2.5	TR0016
TUG4	2,5	2x (1x2.5) + PE 2.5	TR0016
TUE1	2,5	2x (1x2.5) + PE 2.5	TR0016
TUE2	2,5	2x (1x2.5) + PE 2.5	TR0016
TUE3	2,5	2x (1x2.5) + PE 2.5	TR0016
ACU	2,5	4x (1x2.5) + PE 2.5	TR0020

Tabla 4.40 – Canalizaciones utilizadas

0

Tubelectric®

Semipesado

CARACTERÍSTICAS TÉCNICAS

Tubos rigidos de PVC, autoextinguible, no propagante de la llama, curvable en frío con resorte, desarrollado para todo tipo de obra, sea del tipo tradicional o en seco, que requiera una canalización segura e inalterable con el paso del tiempo. Por sus características está especialmente indicado para el reemplazo directo de canalizaciones diseñadas con tubos metálicos livianos con dos ventajas fundamentales: la primera, su condición de material aislante, y la segunda, su resistencia a todo tipo de proceso corrosivo.

Pueden ser instalados EMBUTIDOS y/o SOBREPUES-TOS con excelentes resultados contando con protección contra la acción de rayos UV absolutamente necesaria para su instalación a la intemperie.

- Normas utilizadas para su construcción y control: IRAM 62386-1, IRAM 62386-21, IEC 61386-21
- Rigidez dieléctrica ensayada a 2000V durante 5 minutos sin producir ruptura del aislante.
- Presentación: tubos rigidos de 3 mts. de largo.
- . Color: Gris Ral 7035
- Resistencia a la aislación > 100MS2

Código	Nominal	Metros por paquete
TR0016	16	102
TR0020	20	90
TR0022	22	60
TR0025	25	60
TR0032	32	45
TR0040	40	30
TR0050	50	15

Clasificación por aplicación de las Normas IRAM 62386-1 e IRAM 62386-21

750N	3	Resistencia a la compresión 750 N (75 kg).
凹	3	Resistencia al impacto mayor a masa de 2 kg. desde una altura de 100 mm.
i];	2	Temperatura de servicio mínima -5° C
T.	1	Temperatura de servicio máxima 60°C

Licencia de Sello

IRAM DC-E-H30-001.1

Indicado para todo tipo de obra, sea construcción tradicional o en seco.

Ilustración 4.1 – Características principales de los tubos de PVC

4.3.11 Selección de gabinetes y verificación de disipación de calor

Para la selección del gabinete del tablero principal (TP) y de los tableros seccionales (TS1 y TS2)

Deben tenerse en cuenta:

- La cantidad de módulos a utilizar (por ejemplo, una térmica tetra polar utiliza 4 módulos)
- La potencia total disipada dentro del tablero

La cantidad de módulos a utilizar en cada tablero se especifica en la Tabla 4.41:

Térmicas Monofásicas	Térmicas Tetrapolares	Disyuntores Tetrapolares	Suma Módulos	Total (+40% disipación y accesorios)
0	3	1	16	23
3	1	1	14	20
10	2	1	32	45

Tabla 4.41 – Cantidad de módulos por tablero

Para poder llevar a cabo el dimensionamiento térmico es necesario contar con las potencias disipadas por los componentes a instalar en el interior del tablero. Dichos valores se deben solicitar a los fabricantes de los dispositivos o en su defecto, se deberán emplear las potencias máximas que cada dispositivo puede disipar según su norma de producto.

Como referencia se indican en la tabla siguiente los máximos valores de potencia por polo a corriente nominal, que según la Tabla 15 de la Norma IEC 60898, pueden disipar los pequeños interruptores automáticos (PIA):

Tabla 771-H.XII – Potencia disipada por polo a corriente nominal

Corriente asignada [A]	Potencia disipada [W]
$I_n \leq 10$	3
$10 < I_n \le 16$	3,5
$16 < I_n \le 25$	4,5
$25 < I_n \le 32$	6
$32 < I_n \le 40$	7,5
$40 < I_n \le 50$	9
$50 < I_n \le 63$	13
$63 < I_n \le 100$	15
$100 < I_n \le 125$	20

Tabla 4.42 – Potencia disipada por polo a corriente nominal

Para el cálculo de la potencia total que se debe disipar en el tablero y considerando lo establecido en IEC 60670-24, se debe tomar en cuenta lo siguiente:

Corriente asignada de entrada (Ine): Corriente asignada del dispositivo de maniobra y protección ubicado en la entrada o cabecera del tablero o la suma aritmética de las corrientes asignadas de todos los dispositivos de maniobra y protección ubicados en la entrada del tablero que son susceptibles de ser utilizados al mismo tiempo;

Corriente asignada de salida (Inu): Suma aritmética de las corrientes asignadas de todos los dispositivos de maniobra y protección de salida del tablero que son susceptibles de ser utilizados al mismo tiempo;

Corriente asignada del tablero (Inq): Corriente asignada a ser calculada como Inq= Ine X Ke

Factor de utilización (K_e): Relación entre la corriente que real mente circula por alguno de los dispositivos de protección de entrada o cabecera del tablero y la corriente asignada de dicho dispositivo de cabecera. El factor de utilización se toma por convención igual a 0,85

Factor de simultaneidad (K): Relación calculada por el instalador entre la corriente asignada del tablero (Inq) y la corriente asignada de salida (Inu). Si en la cabecera existe un interruptor diferencial o un interruptor-seccionador en lugar de un interruptor automático termomagnético la corriente asignada del tablero se considera igual a la corriente asignada de salida (Inu)

Si no se disponen los valores reales de corriente, se puede emplear convencionalmente el factor de simultaneidad K indicado en la Tabla 4.43:

Tabla 771-H.XIII – Factor de simultaneidad (K) asignado para tableros que cumplen con IEC 60670-24

N [°] de circuitos principales	Factor de simultaneidad asignado		
2 y 3	0,8		
4 y 5	0,7		
6 a 9 inclusive	0,6		
10 (y mayor cantidad)	0,5		

Tabla 4.43 – Factor de simultaneidad K asignado para tableros que cumplen con IEC 60670-24

La potencia total disipada dentro del tablero se calcula mediante la Ecuación 4.12:

$$P_{Tot} = P_{dp} + 0.2 * P_{dp} + P_{au}$$

Ecuación 4.12 – Potencia disipada dentro del tablero

Donde:

- P_{Tot} es la potencia disipada en el tablero, en watts
- P_{dp} es la potencia disipada por los dispositivos de protección, en watts, tomando en cuenta la utilización de Ke y el factor de simultaneidad K
- 0,2*P_{dp} es la potencia disipada por las conexiones, los tomacorrientes, relés, interruptores diferenciales, interruptores seccionadores, etc.

Pau es la potencia total disipada por los otros dispositivos y aparatos no incluidos en P_{dp} y 0,2*P_{dp}, tales como las lámparas de señalización, transformadores para campanillas, etc.

El valor de la potencia total disipada en el tablero (P_{tot}) debe ser menor o igual a la potencia máxima disipable por la envoltura o gabinete (P_{de}), o sea

$$P_{tot} \leq P_{de}$$

Ecuación 4.13 – Verificación de potencia

Los cálculos de disipación de potencia para cada tablero se detallan en las tablas Tabla 4.44, Tabla 4.45 y Tabla 4.46:

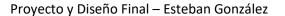

Determinación de la potencia a disipar dentro del TP						
Circuito(s)		Potencia disipada por polo (W)	Número de polos	Potencia disipada por cada dispositivo de protección Pd (W)	Factor de utilización Ke o K	Potencia total disipada por cada dispositivo Pd . (Ke² o K²)
Circuito de entrada	TP	9	4	36	0.85	26.01
Civavita salida	TS1	4.5	4	18	0.8	11.52
Circuito salida	TS2	7.5	4	30	0.8	19.20
	Pdp (W)					
0,2*Pdp (W)						11.35
Pau(W)						0.00
		Ptot(W)				68.08

Tabla 4.44 – Cálculo de la potencia a disipar para el tablero principal

Determinación de la potencia a disipar dentro del TS1						
Circuit	co(s)	Potencia disipada por polo (W)	Número de polos	Potencia disipada por cada dispositivo de protección Pd (W)	Factor de utilización Ke (entrada) o K (salida)	Potencia total disipada por cada dispositivo Pd . (Ke² o K²)
Entrada	TS1	4	4	16	0.85	11.56
	IUG 1	3.5	2	7	0.8	4.48
Salida	TUG1	3.5	2	7	0.8	4.48
	TUE1	3.5	2	7	0.8	4.48
Pdp (W)						25
0,2*Pdp (W)						5
Pau(W)						0
Ptot(W)						30

Tabla 4.45 – Cálculo de la potencia a disipar para el tablero seccional 1

Determinación de la potencia a disipar dentro del TS2						
Circuit	co(s)	Potencia disipada por polo (W)	Número de polos	Potencia disipada por cada dispositivo de protección Pd (W)	Factor de utilización Ke (entrada) o K (salida)	Potencia total disipada por cada dispositivo Pd . (Ke² o K²)
Entrada	TS2	7.5	4	30	0.85	21.675
	IUG2	3.5	2	7	0.5	1.75
	IUG3	3.5	2	7	0.5	1.75
	IUG4	3.5	2	7	0.5	1.75
	IUG5	3.5	2	7	0.5	1.75
Calida	TUG2	3.5	2	7	0.5	1.75
Salida	TUG3	3.5	2	7	0.5	1.75
	TUG4	3.5	2	7	0.5	1.75
	TUE2	3.5	2	7	0.5	1.75
	TUE3	3.5	2	7	0.5	1.75
	ACU	3.5	4	14	0.5	3.5
Pdp (W)						40.925
	0,2*Pdp (W)					
	Pau(W)					
	Ptot(W)					

Tabla 4.46 - Cálculo de la potencia a disipar para el tablero seccional 2

En base a la cantidad de módulos necesarios para cada tablero (Tabla 4.41), y su potencia total a disipar (tablas Tabla 4.44, Tabla 4.45 y Tabla 4.46), se seleccionan los gabinetes del fabricante Tableplast, los cuales se detallan en la Tabla 4.47:

Tablero	Fabricante	Modelo	Módulos	IP	IK	Clase	Potencia disipada (W)
TP	Tableplast	GR3900	39	65	10	2	82
TS1	Tableplast	GR2900	24	65	10	2	42
TS2	Tableplast	GR4300	54	65	10	2	103

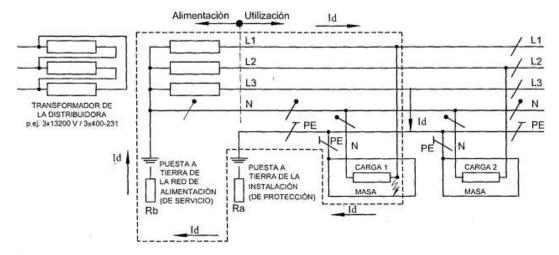
Tabla 4.47 – Gabinetes seleccionados

Los detalles constructivos de cada gabinete se detallan en la Tabla 4.8 de la memoria técnica.

Los detalles constructivos de cada gabinete se detallan en la memoria técnica.

4.3.12 Puesta a tierra

La puesta a tierra se emplea en la instalación eléctrica del taller como una medida de seguridad contra contactos indirectos. En caso de una falla donde un conductor energizado haga contacto con una superficie conductora expuesta (masa), la conexión a tierra reduce el peligro para las personas que toquen las superficies conductoras de los equipos.


Se utiliza el esquema de conexión a tierra TT. Este esquema tiene un punto del sistema de la red de alimentación (generalmente el conductor neutro) conectado directamente a una toma de tierra (tierra de servicio) por la compañía proveedora de energía eléctrica y las masas eléctricas de la instalación de la planta, conectadas a través de un conductor de protección llamado PE y

de un conductor de puesta a tierra, a otra toma de tierra (tierra de protección) que debe ser eléctricamente independiente de la toma de tierra de servicio.

En el Gráfico 4.2se representa el esquema TT, con el recorrido de una corriente de defecto a tierra a través del lazo de falla:

Carga 1; carga 2: Diferentes cargas o consumos dentro del mismo inmueble.

PE: Conductor de protección de la instalación consumidora del inmueble, conectado a la puesta a tierra de protección, independiente de la puesta a tierra de servicio de la empresa distribuidora de energia eléctrica.

Id: Intensidad de corriente de defecto o de falla, en este ejemplo entre la fase L1 y masa, que cierra el lazo de falla por el suelo o tierra.

Ra: Resistencia de la puesta a tierra de protección de la instalación consumidora.

Rb: Resistencia de la puesta a tierra de servicio de la red de alimentación.

Figura 771.3.A - Esquema TT

Neutro de la alimentación a (T)ierra - Masas de la instalación de utilización a una (T)ierra independiente

Gráfico 4.2 - Lazo de falla para sistemas TT

Para conformar un esquema TT, la toma de tierra de la instalación interna deberá tener características de "tierra lejana o tierra independiente" frente a la toma de tierra de servicio de la red de alimentación. Para cumplir con la característica de "tierra lejana", la toma de tierra de la instalación deberá situarse a una distancia, medida en cualquier dirección, mayor a 10 veces el radio equivalente de la jabalina de mayor longitud. El radio equivalente se calcula mediante la Ecuación 4.14:

$$Re = \frac{l}{\ln(\frac{l}{d})}$$

Ecuación 4.14 - Radio equivalente

Donde:

- Re es el radio equivalente (zona de influencia electromagnética del electrodo de puesta a tierra) [m].
- I es la longitud de la jabalina [m].
- d es el diámetro de la jabalina [m].

para la toma de tierra se utilizan 3 jabalinas de 5/8" acoplables, cuyas características se detallan en la Ecuación 4.14:

sabiendo que l=4,5m y d=0,015875m, utilizando la Ecuación 4.9, se obtiene:

$$Re = 0.07968m \rightarrow 10 * Re = 7.968 m \approx 8m$$

Lo que significa que la toma de tierra de la instalación debe estar a una distancia mínima de 8 metros de la toma de tierra de la red de alimentación, condición que se verifica, ya que hay una distancia de100 metros aproximadamente.

La jabalina se conecta mediante un conductor de puesta a tierra (PAT) aislado, color verdeamarillo, al borne de puesta a tierra del tablero principal y desde aquí, a través de un conductor aislado, color verde – amarillo a cada uno de los tableros seccionales (TS1 y TS2).

Finalmente, a cada tablero seccional se vinculan las masas eléctricas de todos los circuitos correspondientes a cada circuito de la instalación.

La selección de la sección mínima del conductor de protección (PE) y de puesta a tierra se seleccionan de la Tabla 4.48:

Tabla 771.18.III - Sección nominal mínima de los conductores de puesta a tierra y de protección

Sección nominal de los conductores de línea (fase) de la instalación "S" [mm²]	Sección nominal del correspondiente conductor de protección "S _{PE} " [mm²] y del conductor de puesta a tierra "S _{PAT} " [mm²]
S ≤ 16	. S
16 < S ≤ 35	16
S > 35	\$/2

Nota: Si el material del conductor de protección no es el mismo que el de los conductores de línea, deberá aplicarse la Tabla 771-C.II.

Tabla 4.48 – Sección nominal mínima de los conductores de puesta a tierra y protección

Las secciones del conductor de protección de cada circuito se detallan en la Tabla 4.49:

Circuito/Tablero	Norma	Sección (mm²)
TP	IRAM NM 247-3	16
TS1	IRAM NM 247-3	4
TS2	IRAM NM 247-3	10
IUG1	IRAM NM 247-3	2,5
IUG2	IRAM NM 247-3	2,5
IUG3	IRAM NM 247-3	2,5
IUG4	IRAM NM 247-3	2,5
IUG5	IRAM NM 247-3	2,5
TUG1	IRAM NM 247-3	2,5
TUG2	IRAM NM 247-3	2,5
TUG3	IRAM NM 247-3	2,5
TUG4	IRAM NM 247-3	2,5
TUE1	IRAM NM 247-3	2,5
TUE2	IRAM NM 247-3	2,5
TUE3	IRAM NM 247-3	2,5
ACU	IRAM NM 247-3	2,5

Tabla 4.49 – Sección de los conductores de protección

4.4 Cálculo y diseño de iluminación interior

4.4.1 Método de los lúmenes

Para el cálculo de los niveles necesarios de iluminación para el taller se utilizará el método de los lúmenes. El método de los lúmenes consiste en calcular el valor medio en servicio de la luminancia en un local iluminado con alumbrado general. Este método es muy práctico y fácil de ejecutar, y por ello se lo utiliza mucho en la iluminación de interiores cuando la precisión necesaria no es muy alta como ocurre en la mayoría de los casos.

El proceso de cálculo se puede explicar mediante el siguiente diagrama de bloques:

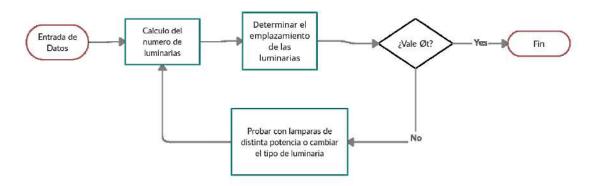


Ilustración 4.2 – Diagrama de bloques para el cálculo de luminarias mediante el método del lumen

4.4.1.1 Datos de entrada

- Dimensiones del local y la altura del plano de trabajo (la altura del suelo a la superficie de la mesa de trabajo), normalmente de 0,85m.

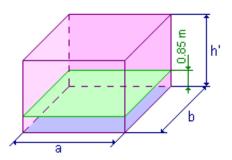


Imagen 4.9 – Plano de trabajo

- Nivel de iluminancia media (E_m): este valor depende del tipo de actividad a realizar en el local y se encuentra tabulado.
- Elegir el tipo de lámpara más adecuada de acuerdo con el tipo de actividad a realizar.
- Elegir el sistema de alumbrado que mejor se adapte a las necesidades del local y las luminarias correspondientes.
- Determinar la altura de suspensión de las luminarias según el sistema de iluminación escogido.



Imagen 4.10 – Altura de suspensión de las luminarias

Donde:

- o h es la altura entre el plano de trabajo y las luminarias
- o h' es la altura del local
- o d es la altura del plano de trabajo al techo
- d' es l altura entre el plano de trabajo y las luminarias

para locales con iluminación directa, semidirecta y difusa la altura mínima de las luminarias se calcula como:

$$h = \frac{2}{3} * (h' - 0.85) [m]$$

Ecuación 4.15 – altura mínima de las luminarias

la altura óptima se calcula como:

$$h = \frac{4}{5} * (h' - 0.85) [m]$$

Ecuación 4.16 – altura óptima de las luminarias

La altura del local es de h'=5m, entonces la altura mínima de las luminarias será de

$$h = \frac{2}{3} * (5 - 0.85) = 2.77 [m]$$

La altura del local es de h'=5m, entonces la altura óptima de las luminarias será de

$$h = \frac{4}{5} * (5 - 0.85) = 3.32 [m]$$

Para el proyecto, se tomará una altura de referencia las luminarias de h=3.5 m

4.4.1.2 Índice del local (k)

para iluminación directa, semidirecta directa-indirecta y general-difusa se utiliza

$$k = \frac{a * b}{h * (a + b)}$$

Ecuación 4.17 – Cálculo del índice del local

Donde:

- a es el ancho del sector
- b es la profundidad del sector
- h es la altura del sector
- k es un número comprendido entre 1 y 10. A pesar de que se pueden obtener valores mayores de 10 con la fórmula, no se consideran por que la diferencia entre usar diez o un número más alto en los cálculos es despreciable.

En la tabla se detallan los valores de k para cada sector:

Sector	a (m)	b (m)	h (m)	k
Taller	10	26	3.5	2.06
Estética vehicular	10	5	3.5	0.95
Oficina	4.5	3.5	3.5	0.56
Sala de espera	2	3	3.5	0.34

4.4.1.3 Coeficientes de reflexión

Los coeficientes de reflexión de techo, paredes y suelo se encuentran tabulados para diferentes tipos de materiales, superficies y acabado, si no se dispone de ellos, se utiliza la siguiente tabla:

Superficie	Color	Factor de reflexión
	Blanco o muy claro	0,7
Techo	Claro	0,5
	Medio	0,3
	Claro	0,5
Paredes	Medio	0,3
	Oscuro	0,1
Suelo	Claro	0,3
Suelo	Oscuro	0,1

Tabla 4.50 – Coeficientes de reflexión

Para el sector taller y el sector estética vehicular se tiene un factor de reflexión de 0,3 para el techo, un factor de 0,3 para las paredes y un factor de 0,1 para el suelo

Para el sector oficina y sala de espera se tiene un factor de reflexión de 0,5 para el techo y paredes y un factor de 0,1 para el suelo.

4.4.1.4 factor de utilización (η)

el factor de utilización se obtiene utilizando la Tabla 4.51 , a partir del índice del local y los factores de reflexión. Si no se pueden obtener los factores por lectura directa será necesario interpolar.

Tipo de	Índice				Fa	ctor (de uti	lizac	ión ('	η			
aparato	del				Fact	or de	refle	xión	del t	echo			
de	local		0.8			0.7			0.5		0	.3	0
alumbrado	k			Fa	ctor	de re	flexić	in de	las	oarec	les		
alambi ado		0.5	0.3	0.1	0.5	0.3	0.1	0.5	0.3	0.1	0.3	0.1	0
l A	0.6	.39	.35	.32	.38	.34	.32	.38	.34	.31	.33	.31	.30
\perp	0.8	.48	.43	.40	.47	.42	.40	.46	.42	.39	.41	.38	.37
	1.0	.53	.49	.46	.52	.48	.45	.51	.47	.45	.46	.44	.41
10,%	1.25	.58	.54	.51	.57	.53	.50	.55	.51	.49	.50	.48	.45
- 12	1.5	.62	.58	.54	.61	.57	.54	.58	.55	.52	.53	.51	.48
(00)00	2.0	.66	.62	.59	.64	.61	.58	.61	.59	.57	.56	.55	.52
60 %	2.5	.68	.65	.63	.67	.64	.62	.64	.61	.60	.59	.57	.54
'	3.0	.70	.67	.65	.69	.66	.64	.65	.63	.61	.60	.59	.56
$D_{\text{max}} = 1.0 \text{ H}_{\text{m}}$	4.0	.72	.70	.68	.70	.69	.67	.67	.66	.64	.63	.61	.58
fm .70 .75 .80	5.0	.73	.71	.70	.71	.70	.68	.68	.67	.66	.64	.63	.59

H_m: altura luminaria-plano de trabajo

Tabla 4.51 – Factor de utilización n

4.4.1.5 Factor de mantenimiento (fm)

Este coeficiente depende del grado de suciedad ambiental y de la frecuencia de la limpieza del local. Para una limpieza periódica anual se pueden tomar los siguientes valores:

Ambiente	Factor de mantenimiento
Limpio	0.8
Sucio	0.6

Tabla 4.52 – Factor de mantenimiento

4.4.2 Cálculos

4.4.2.1 Flujo luminoso

Para el cálculo del flujo luminoso se utiliza la siguiente ecuación:

$$\phi_T = \frac{E * S}{\eta * f_m}$$

Ecuación 4.18 – Cálculo del flujo luminoso

Donde:

- ϕ_T es el flujo luminoso total
- E es la iluminancia media deseada
- S es la superficie del plano de trabajo
- η es el factor de utilización
- f_m es el factor de mantenimiento

la iluminancia media necesaria de acuerdo al Decreto 351/79 y la Resolución SRT No 84/11 se detalla en Tabla 4.53:

Sector	Iluminancia media deseada (lux)
Taller	300 a 600
Estética Vehicular	600
Oficina	400 a 600
Sala de espera	200

Tabla 4.53 – valores de iluminancia de acuerdo al decreto 351/79

El cálculo del flujo luminoso total se detalla en la Tabla 4.54:

Sector	E (lx)	S (m2)	η	f_m	$oldsymbol{\phi}_T$ (lux)
Taller	450	260	0.55	0.8	265909.09
Estética vehicular	600	50	0.44	0.8	85227.27
Oficina	400	16	0.38	0.8	21052.63
Sala de espera	200	6	0.38	0.8	3947.37

Tabla 4.54 – Calculo del flujo luminoso total para cada sector

4.4.2.2 Numero de luminarias

Para el cálculo del número de luminarias se utiliza la siguiente ecuación:

$$N = \frac{\phi_T}{n * \phi_L}$$

Ecuación 4.19 – cálculo del número de luminarias

Donde:

- N es el número de luminarias
- ϕ_T es el flujo luminoso total
- ϕ_L es el flujo luminoso de una lámpara
- n es el número de lámparas por luminaria

Para el cálculo se una lámpara modelo LED Ecofit T8 del fabricante Phillips con un flujo luminoso de 2000 lm y luminarias de 2 lámparas.

La cantidad de luminarias por sector se detallan en la tabla

Sector	$oldsymbol{\phi}_T$ (Im)	n	$oldsymbol{\phi}_L$ (Im)	Cantidad de lámparas	Cantidad de Iuminarias (N)
Taller	295454.55	2	2000	134	67
Estética vehicular	85227.27	2	2000	44	22
Oficina	21052.6316	2	2000	12	6
Sala de espera	3947.37	2	2000	2	1

4.4.2.3 Distribución de luminarias

Una vez hecho el cálculo del número mínimo de lámparas y luminarias, se procede a distribuirlas sobre la planta del local. En los locales de planta rectangular las luminarias se reparten de forma uniforme en filas paralelas a los ejes de simetría del local según las formulas:

$$N_{ancho} = \sqrt{\frac{N_{total}}{largo} * ancho}$$

Ecuación 4.20 – separación de luminarias para la distribución horizontal

$$N_{largo} = N_{ancho} * (\frac{largo}{ancho})$$

Ecuación 4.21 – separación de luminarias para la distribución vertical

Donde:

N es el número de luminarias

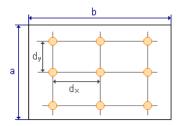


Imagen 4.11 – separación entre lámparas

La distancia máxima de separación entre las luminarias dependerá del ángulo de apertura del haz de luz y de la altura de las luminarias sobre el plano de trabajo. Ver Imagen 4.12.

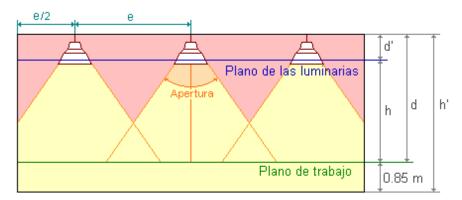


Imagen 4.12 – distancia máxima de separación entre luminarias

Como puede verse fácilmente, mientras más abierto sea el haz y mayor la altura de la luminaria más superficie iluminará, aunque será menor el nivel de iluminancia que llegará al plano de trabajo tal y como dice la ley inversa de los cuadrados. De la misma manera, vemos que las luminarias próximas a la pared necesitan estar más cerca para iluminarla (normalmente la mitad de la distancia). Las conclusiones sobre la separación entre las luminarias las podemos resumir como sigue:

Tipo de luminaria	Altura del local	Distancia máxima entre luminarias
Intensiva	<10m	e≤1.2h
Extensiva	6-10m	o.<1 Fh
Semiextensiva	4-6m	e≤1.5h
Extensiva	≤4m	e≤1.6h
	Distancia pared	I-luminaria e/2

Tabla 4.55 – distancia máxima entre luminarias

Si después de calcular la posición de las luminarias nos encontramos que la distancia de separación es mayor que la distancia máxima admitida quiere decir que la distribución luminosa obtenida no es del todo uniforme. Esto puede deberse a que la potencia de las lámparas escogida sea excesiva. En estos casos conviene rehacer los cálculos probando a usar lámparas menos potentes, más luminarias o emplear luminarias con menos lámparas.

4.4.3 Comprobación de los resultados

Para comprobar los resultados de iluminancia media obtenida, se utiliza la Ecuación 4.22.

La iluminancia media obtenida en la instalación diseñada debe ser igual o superior a la recomendada en las tablas:

$$E_m = \frac{n * \phi_L * f_m}{S} \ge E_{tablas}$$

Ecuación 4.22 – comprobación de la iluminancia media

Como puede observarse en la Tabla 4.56 , para el sector taller debe aumentar la cantidad de lámparas, en la oficina, en el sector estética vehicular y oficina debe disminuir y en la sala de espera se mantiene igual.

Sector	ϕ_L (lm)	n	fm	S (m²)	E (Resultante) (Im)	E (Tablas) (Im)	Cantidad de Iuminarias	Cantidad de lámparas
Taller	2000	67	0.8	260	412.4	450	75	150
Estética vehicular	2000	22	0.8	50	704	600	20	40
Oficina	2000	6	0.8	16	600	400	4	8
Sala de espera	2000	1	0.8	6	266.7	200	1	2

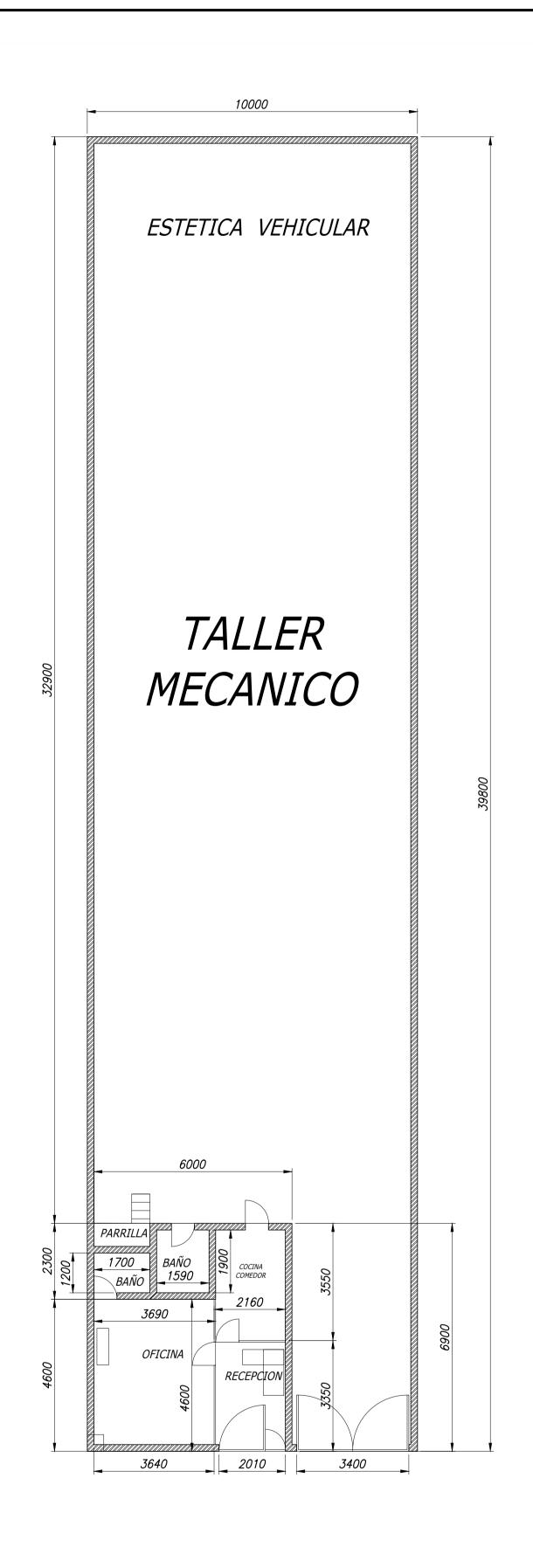
Tabla 4.56 – Comprobación de los resultados

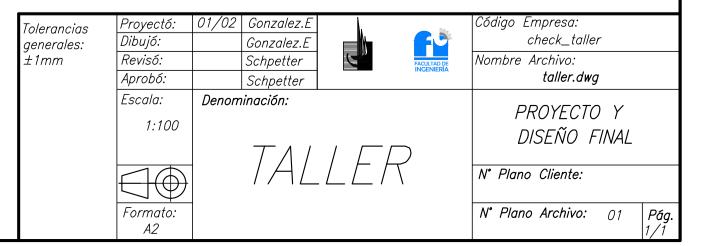
Finalmente, con la cantidad de luminarias, se calcula la disposición de las mismas. Los cálculos se detallan en la tabla

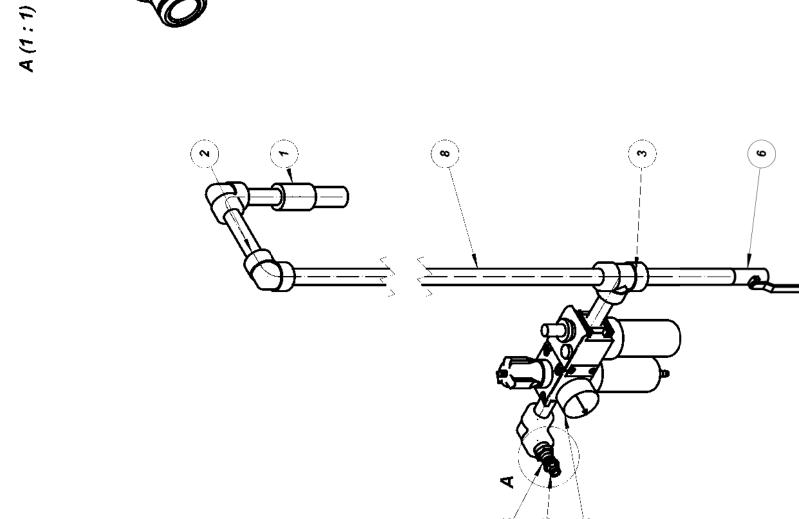
Sector	Ancho (m)	Largo (m)	h (m)	N	N _{ANCHO} (m)	N _{LARGO} (m)	¿e≤1.6h? Tabla 4.55	Dx (m)	Dy (m)
Taller	10	26	3.5	75	5.371	3.737	Si	5.371	3.737
Estética vehicular	10	5	3.5	20	6.325	1.778	No	5.6	1.778
Oficina	4.5	3.5	3.5	4	2.268	1.328	Si	2.268	1.328
Sala de espera	2	3	3.5	1	0.816	1.107	si	0.816	1.107

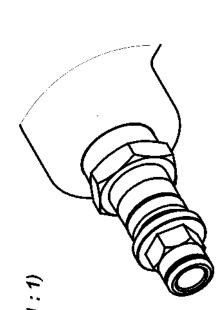
Tabla 4.57 – Distribución de las luminarias

La distribución de las luminarias se detalla los planos del anexo 4.


4.5 ANEXO 4 – PLANOS DE LA INSTALACIÓN ELÉCTRICA



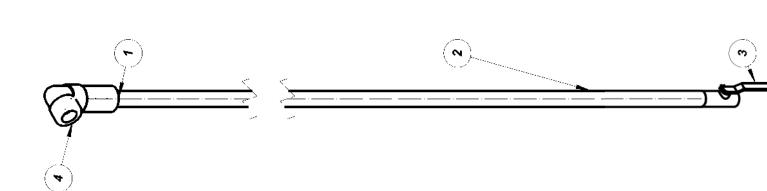



5 Bibliografía

- 1. Instalación de aire comprimido. Real Decreto N° 2060/2008 (2009). República Argentina.
- 2. Carnicer, E. (1977). Aire Comprimido: Teoría y Cálculo de las Instalaciones. Barcelona: Gustavo Gili S.A.
- 3. Hoja de datos de unidad FRL MSB6-1/2-FRC5:J1M1, fabricante FESTO.
- 4. Catálogo de tanques de almacenamiento del fabricante KAESER
- 5. Catálogo de compresores a tornillo Serie SX-HSD del fabricante KAESER
- 6. Catálogo de herramientas neumáticas, edición 2016 del fabricante M7
- 7. Catálogo de herramientas neumáticas, edición 2015 del fabricante RODCRAFT
- 8. Articulo web "¿Qué compresor necesito?" de ATLAS COPCO Argentina: https://www.atlascopco.com/es-ar/compressors/wiki/compressed-air-articles/choosing-compressor-type
- 9. Articulo web "Humedad media en la ciudad de Neuquén" de la página "Wheater Atlas" https://www.weather-atlas.com/es/argentina/neuquen-clima
- 10. Higiene y Seguridad en el Trabajo. Ley N.º 19587. (1972). Decreto N.º 351/79. (1979). República Argentina.
- 11. Asociación Argentina de Luminotecnia (A.A.D.L.). (s.f.). Manual de Luminotécnia- Tomo II. Buenos Aires: Asociación Argentina de Luminotecnia.
- 12. Baschuk, B., Vaimberg, J. (1984). Criterios de predimensionado y métodos de cálculo de iluminación. Buenos Aires: Cámara Argentina del libro.
- 13. Asociación Electrotécnica Argentina. (2006). Reglamentación para la ejecución de instalaciones eléctricas en inmuebles. (AEA 90364-7-771). Buenos Aires: AEA.
- 14. Dirección Municipal de Gestión del Servicio Eléctrico. (2015). Especificación Técnica N.º 1 Conexión Domiciliaria de Energía Eléctrica Monofásica y Trifásica hasta 10 kW. Ciudad de Neuquén.
- 15. Catalogo online del fabricante Schneider en Argentina: https://www.se.com/ar/es/
- 16. Catalogo Retail 2017 del fabricante Schneider
- 17. Catálogo de tableros eléctricos del fabricante Tableplast, Edición 2011
- 18. Catálogo de accesorios para puesta a tierra del fabricante GENROD

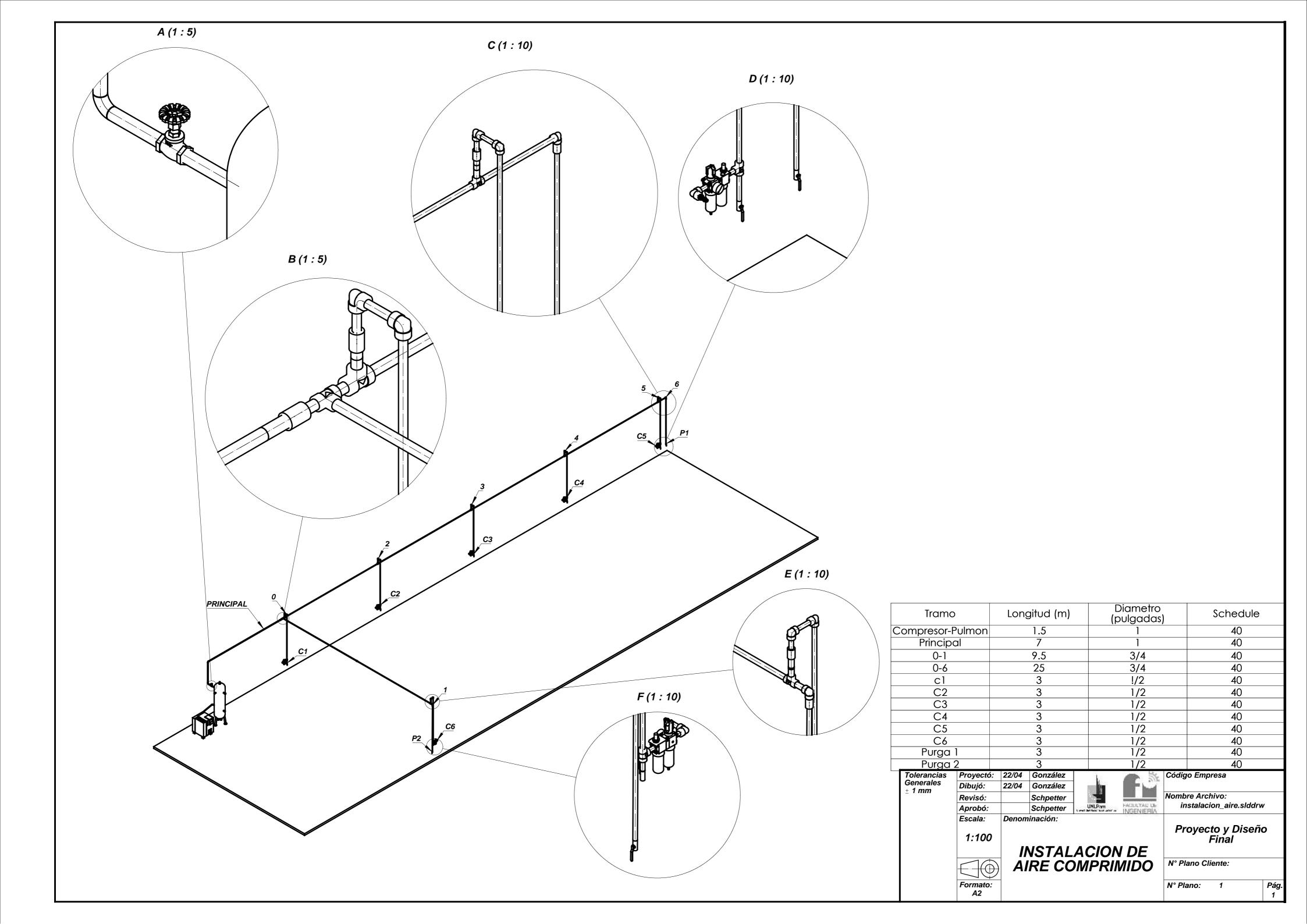
<u>_</u> _2	N.° DE PIEZA	DESCRIPCIÓN	Z	CANTIDAD
•	CLASS 2000 THREADED REDUCER, .750x.500	REDUCTOR ROSCADO 3/4" A 1/2", CLASE 2000	30 3/4" A 300	-
	CLASS 2000 THREADED ELBOW, .50 IN	CODO ROSCADO 1/2", CLASE 2000	/2", CLASE	ю
	CLASS 2000 THREADED TEE, .50 IN	TEE ROSCADA 1/2", CLASE 2000	CLASE 2000	_
	filtro_regulador_lubrica dor_34203398_662_536 _662_662_551_612_022 _02	UNIDAD FRL 1/2"	/2"	ı
	24506	REDUCTOR ROSCADO 1/2" A 3/8"	OO 1/2" A	1
	Valvula de Bola media Pulgada	VÁLVULA DE BOLA 1/2" ROSCADA	A 1/2"	-
	290_1072_03	ACOPLE RAPIDO 3/8"	3/8"	-
	0.5 in, Schedule 40, 1	0.5 in, Schedule 40, 1 BAJADA 1/2", SCH 40, LONGITUD	LONGITUD	-
Toleranciae	Proyectó: 22/04 González	Z6	Código Empresa	sa
Generales	Dibujó: 22/04 González			
	Revisó: Schpetter		Nombre Archivo:	:
	Aprobó: Schpetter	UNLPam FACULTAD DE Universidad Nacional de La Pampa INGENIERÍA	bajada.sIddrw	slddrw
	Escala: Denominación:		I	:
			(

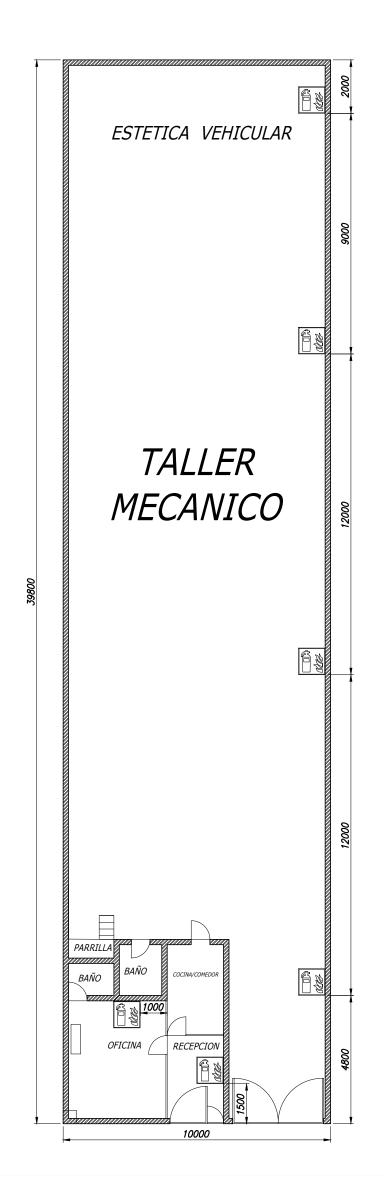
Pág. 1

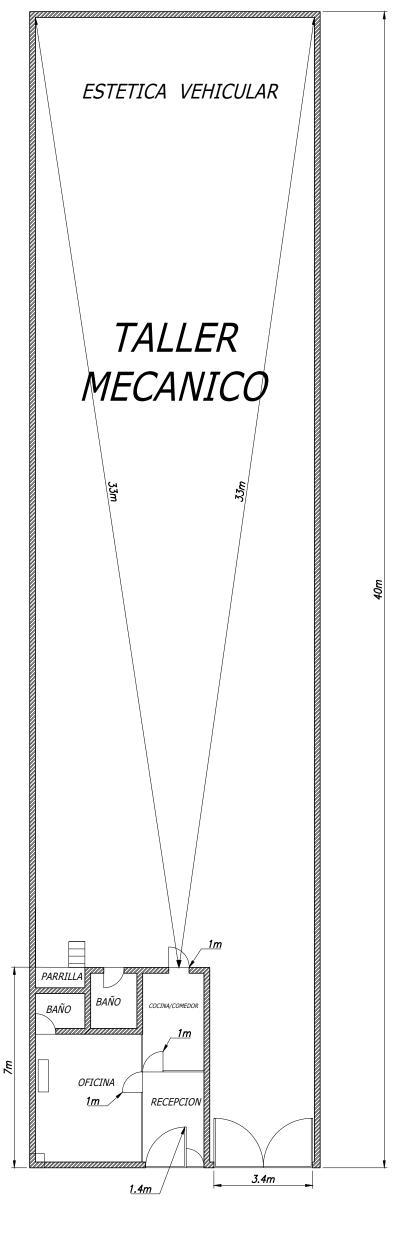

N° Plano:

Formato:

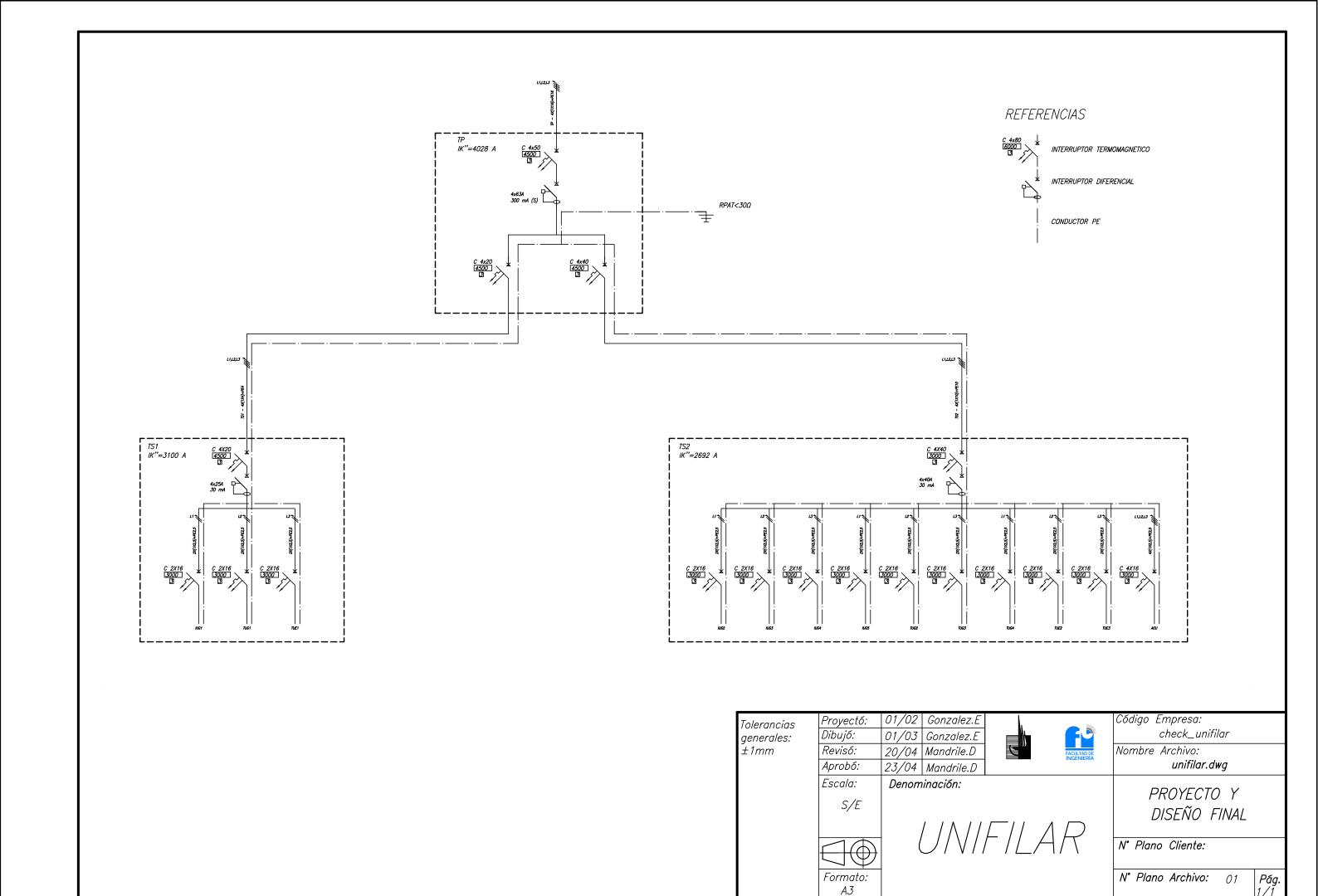
Proyecto y Diseño Final

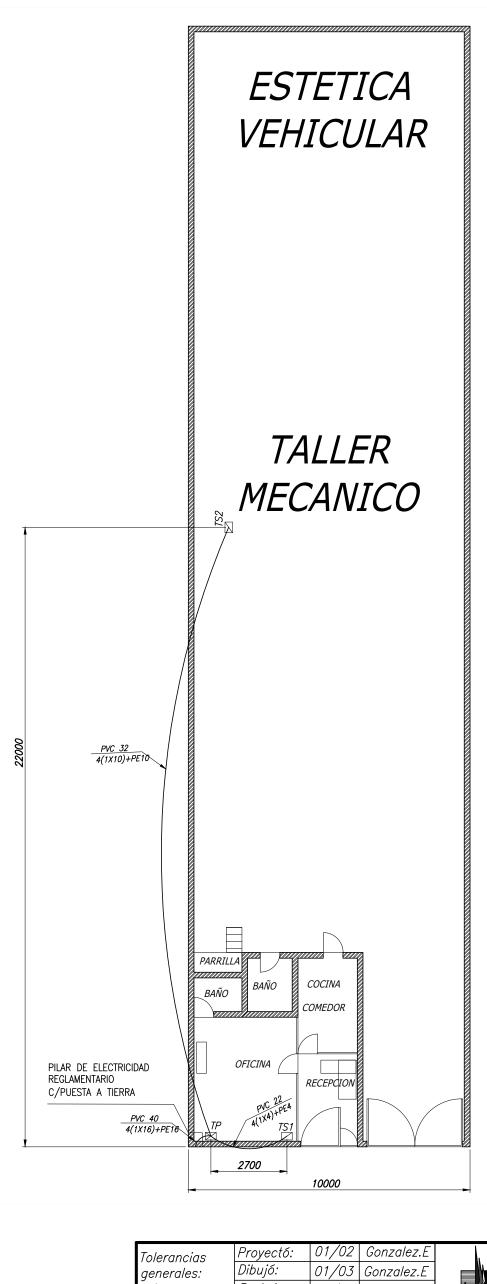

1.5

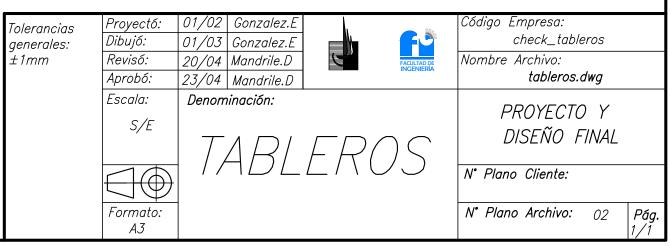

N° Plano Cliente:

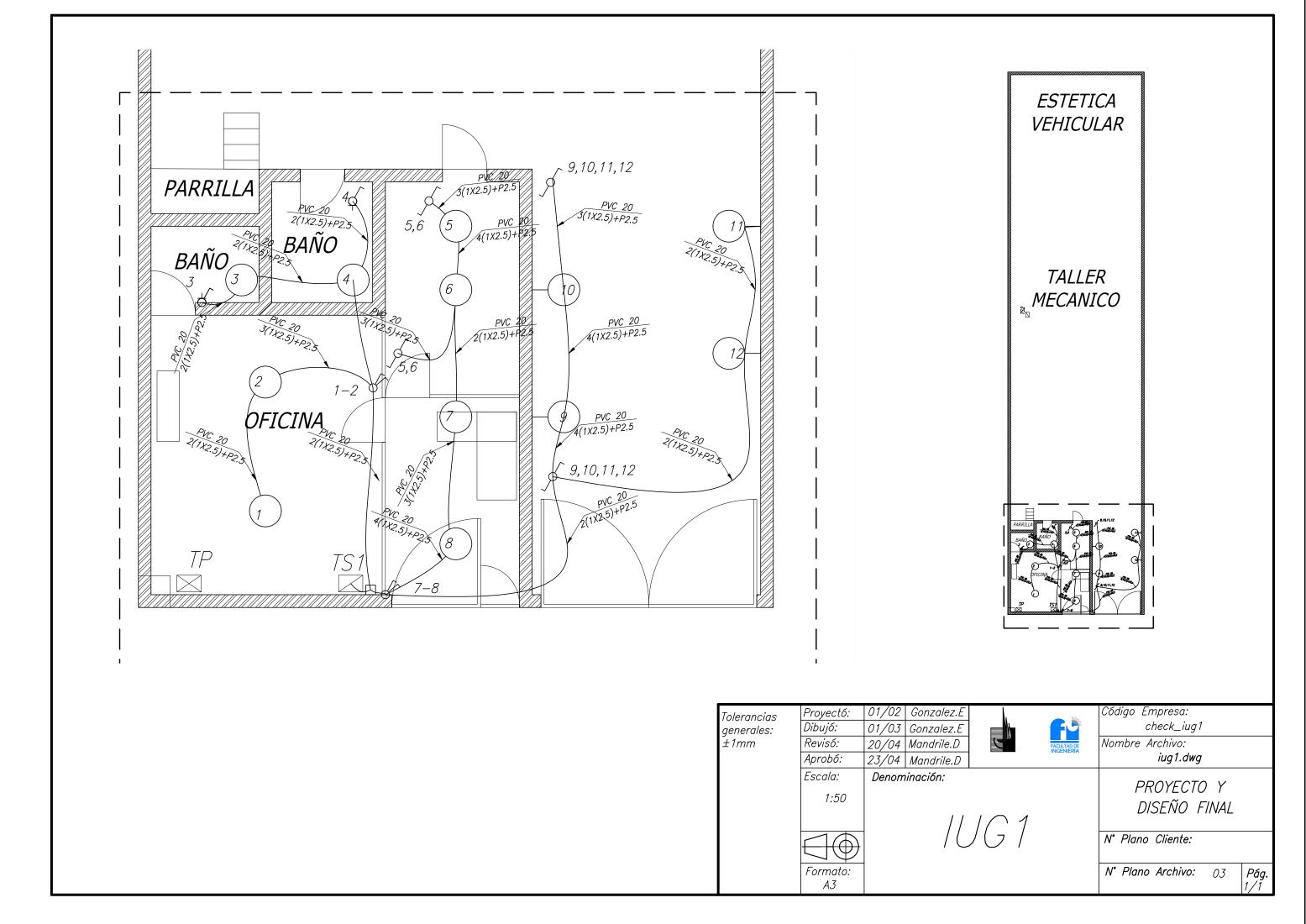

N.º DE ELEMENTO	N.° DE	N.º DE PIEZA		DESCRIPCIÓN	Z	CANTIDAD	2
_	CLASS 2000 THREADED REDUCER, .750x.500)0 .750x.50		REDUCTOR ROSCADO 3/4" A 1/2", CLASE 2000	DO 3/4" A	-	
2	0.5 in, Schedule 40	dule 40	0	CAÑO 1/2", SCH 40, LONGITUD 2.5 m	LONGITUD	_	
3	Valvula de Bola media Pulgada	Bola Jada		VALVULA DE BOLA 1/2"	LA 1/2"	_	
4	CLASS 2000 THREADED ELBOW, 50 IN)0) ELBOW		CODO ROSCADO 1/2"	00 1/2"	1	
Toloranoiae	Proyectó:	Gon	González	300	Código Empresa	ia	
Generales	Dibujó:	Gon	González				
± 1 mm	Revisó:	Sch	Schpetter		Nombre Archivo:	ö	
	Aprobó:	Sch	Schpetter	UNLPam FACULTAD DE Universidad Nacional de La Pampa INGENIERÍA			
	Escala:	Denominación:	ión:		,	;	
	×:×	A : 4	Ċ		Proyecto y Diseno Final	y Diseño ial	
		Ĭ	3 D	Taller	N° Plano Cliente:	ioi	
)]			'			
	Formato: A3				N° Plano:	<u>a.</u>	Pág.
						_	_

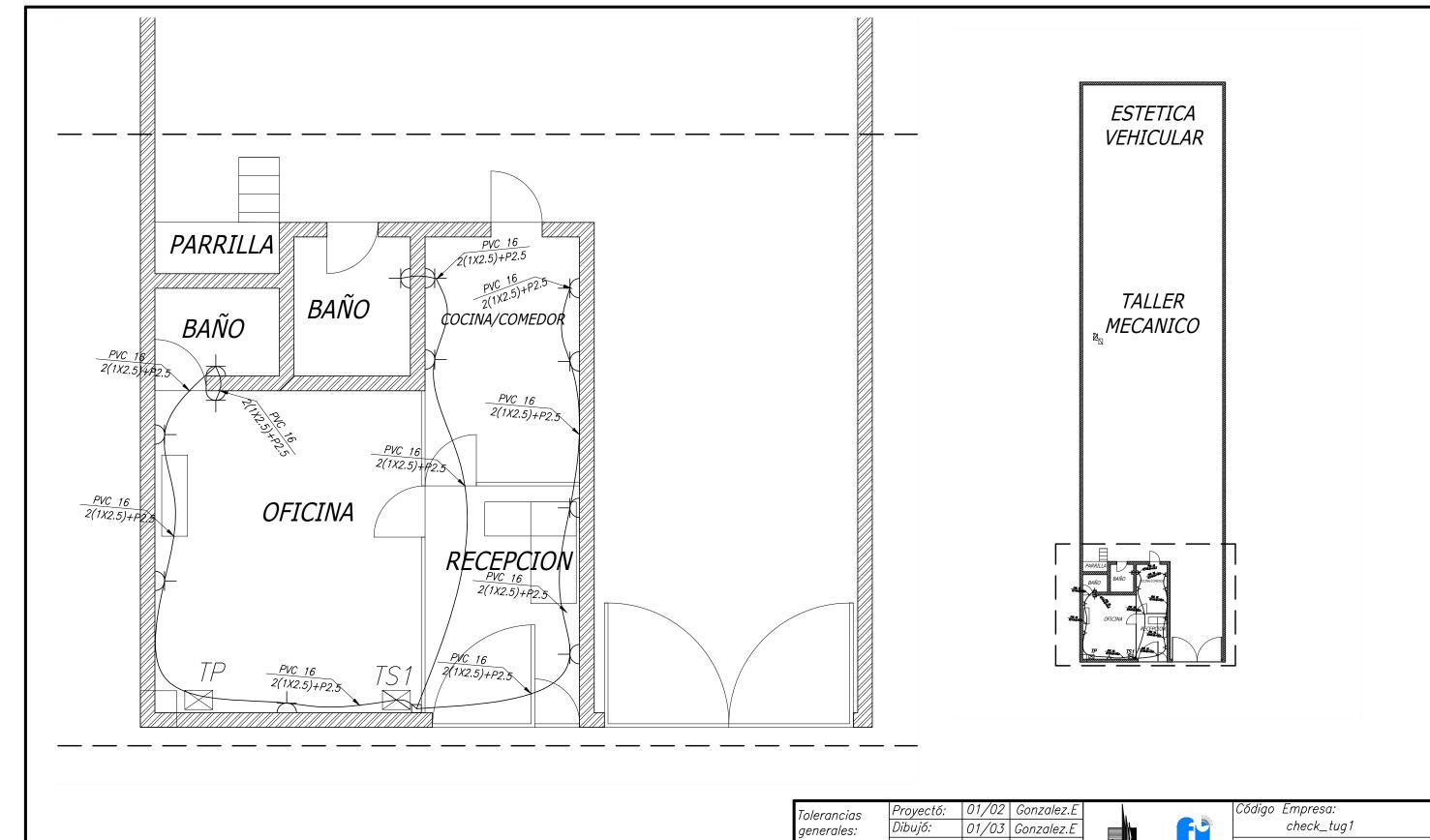
N.º DE ELEMENTO	N.° DE PIEZA	PIEZA	DESCRIPCIÓN	ÓN	CANTIDAD
ı	CLASS 2000 THREADED REDUCER, .750x.500) 750x.500	reductor roscado 3/4" a 1/2", clase 2000	1DO 3/4" A 2000	1
2	0.5 in, Schedule 40	dule 40	CAÑO 1/2", SCH 40, LONGITUD 2.5 m	, LONGITUD	_
ю	Valvula de Bola media Pulgada	3ola ada	VALVULA DE BOLA 1/2"	DLA 1/2"	_
4	CLASS 2000 THREADED ELBOW, .50 IN) ELBOW,	CODO ROSCADO 1/2"	DO 1/2"	1
Toloranoiae	Proyectó:	González	Z:	Código Empresa	ia
Generales	Dibujó:	González	20		
± 1 mm	Revisó:	Schpetter)	Nombre Archivo:	;
	Aprobó:	Schpetter	UNLPam FACULTAD DE Universidad Nacional de La Pampa INGENIERÍA		
	Escala: De	Denominación:			
	×	Aire	Aire Comprimido	Proyecto y Diseno Final	y Diseno ial
	(Taller	N° Plano Cliente:	 •
	Formato: A3			N° Plano:	Pág.

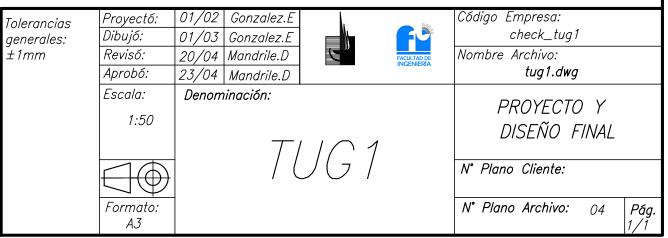


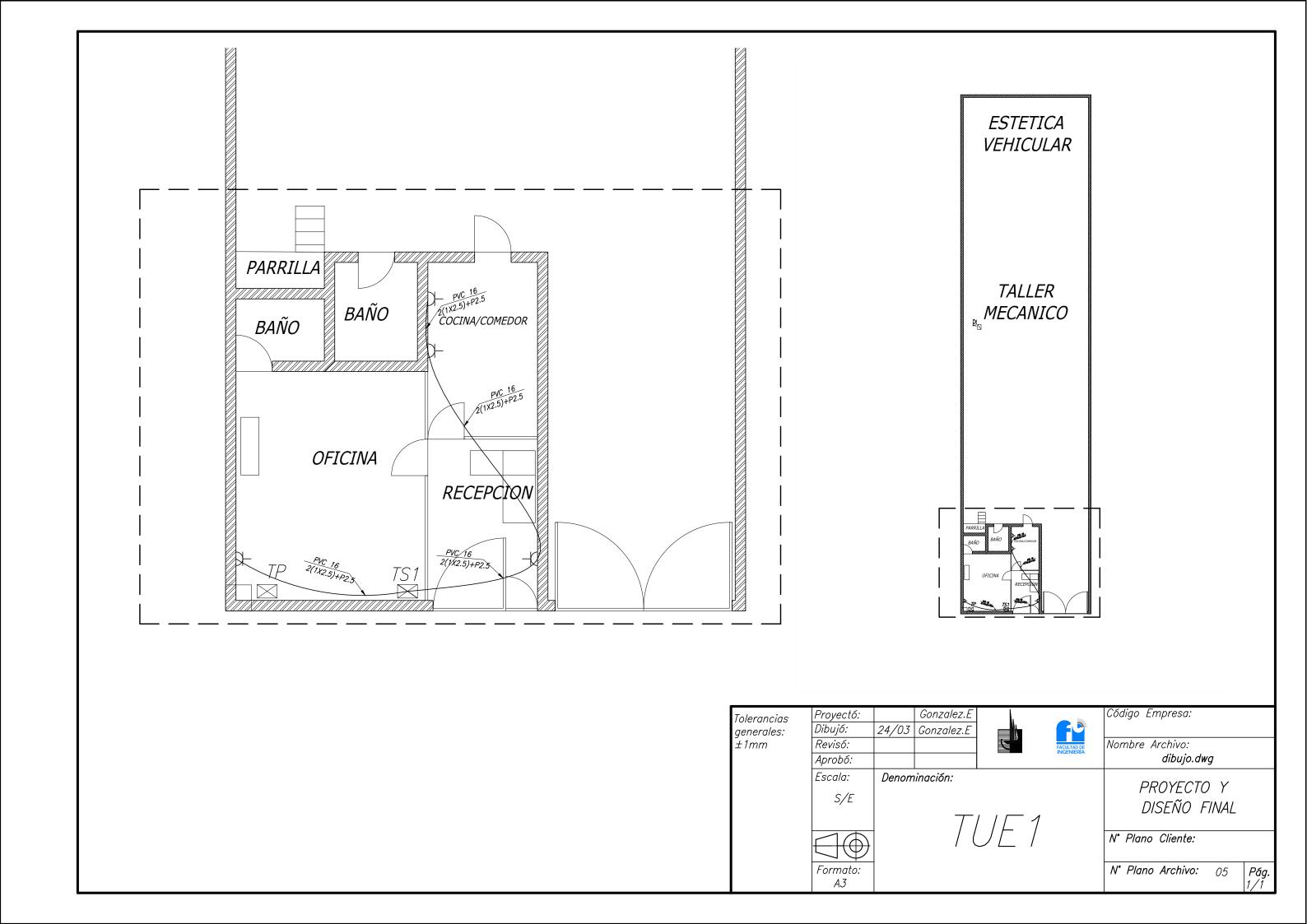


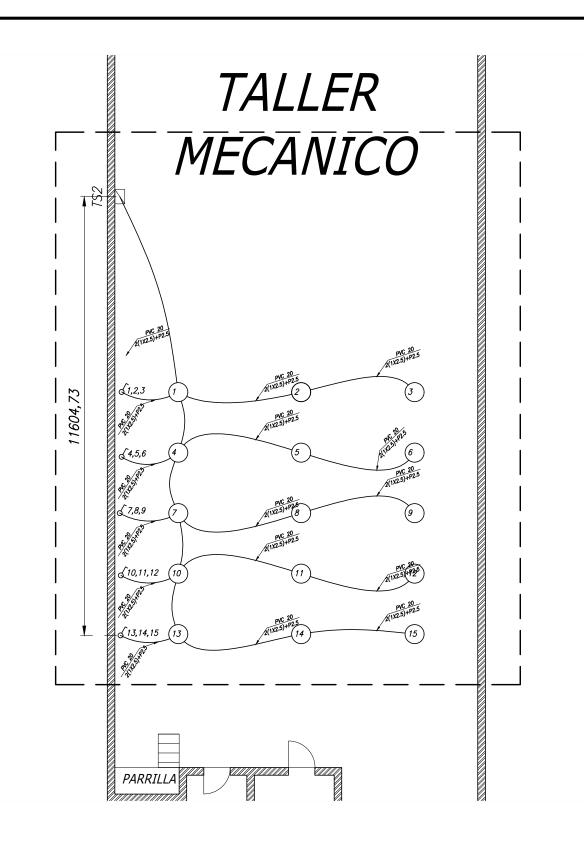

Tolerancias	Proyectó:	01/02	Gonzalez.E	100	Código Empresa:
generales:	Dibujó:	20/04	Gonzalez.E		check_extintores
±1mm	Revisó:		Schpetter.N	FACULTAD DE INGENIERIA	Nombre Archivo:
	Aprobó:		Schpetter.N		extintores.dwg
	Escala: S/E Formato: A3		ninación: - X [tores	PROYECTO Y DISEÑO FINAL Nº Plano Cliente: Nº Plano Archivo: 01 Pác

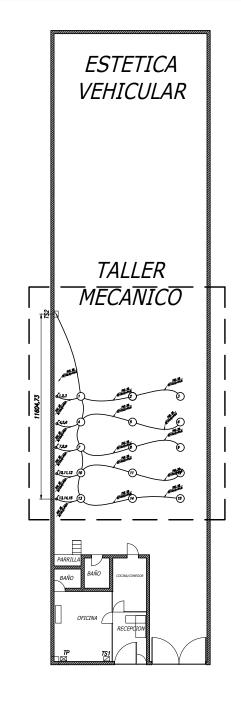


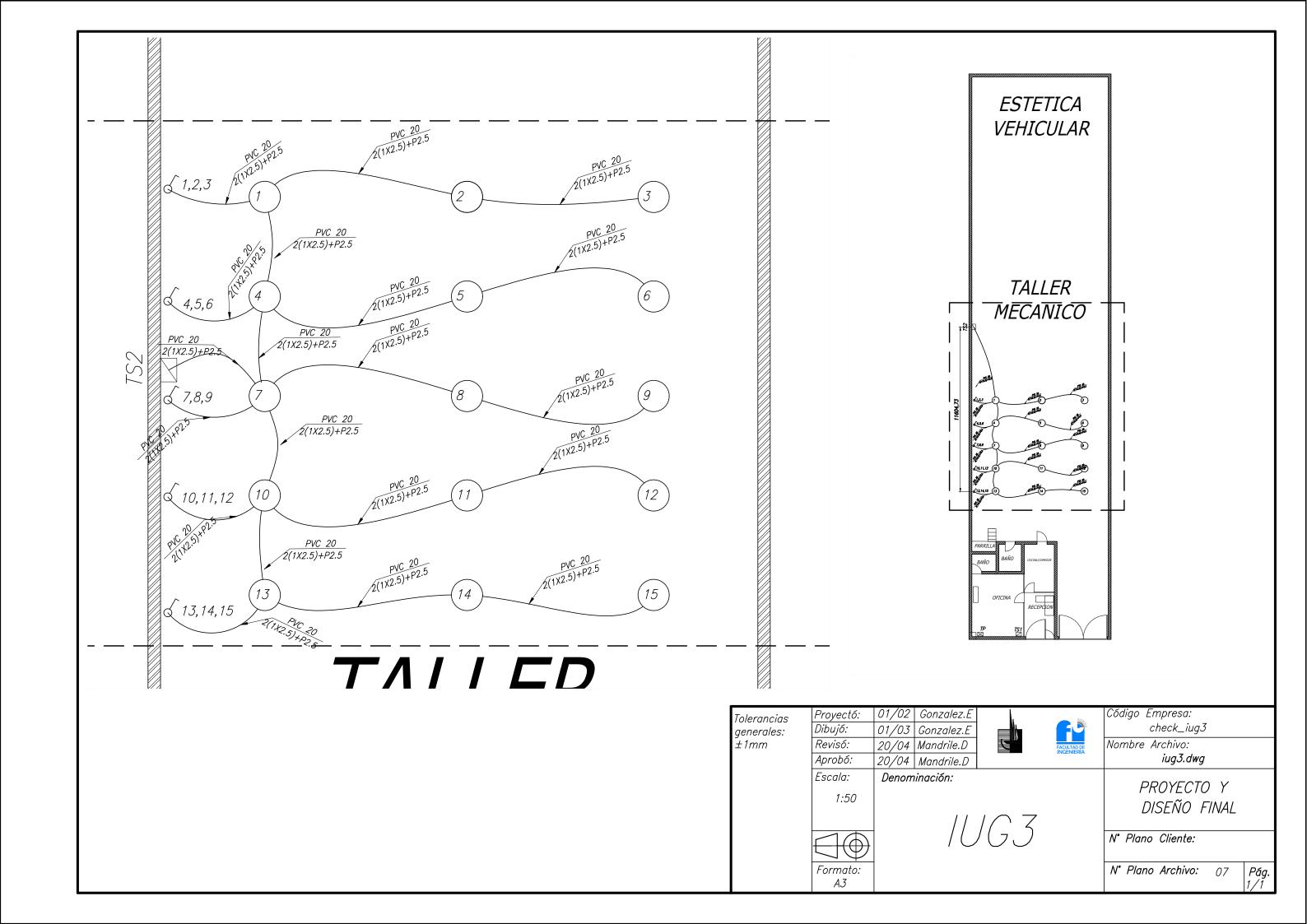

Tolerancias	Proyectó:	01/02	Gonzalez.E		- Mile	Código Empresa:
generales:	Dibujó:		Gonzalez.E			check_escape
±1mm	Revisó:		Schpetter.N		FACULTAD DE INGENIERÍA	Nombre Archivo:
	Aprobó:		Schpetter.N	<u> </u>	INGLINICKIA	escape.dwg
	Escala: S/E Formato: A3	,	ninación: — _ S C (ape		PROYECTO Y DISEÑO FINAL Nº Plano Cliente: Nº Plano Archivo: 02 Pág

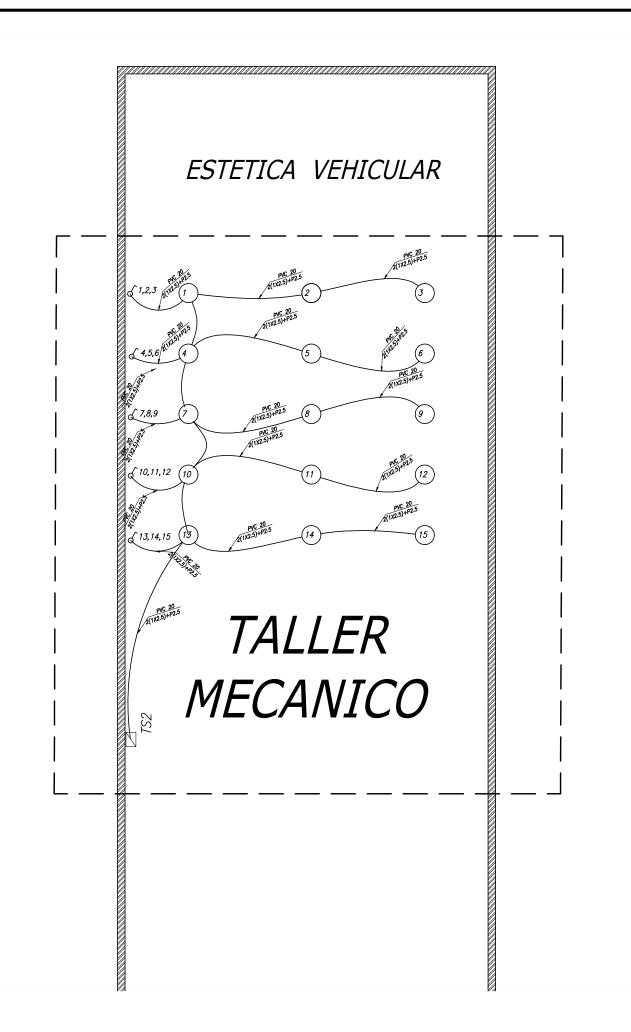


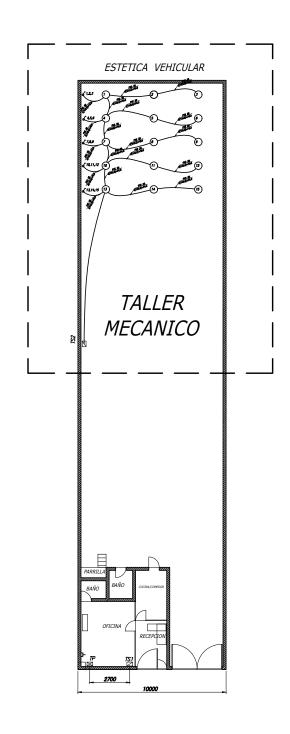




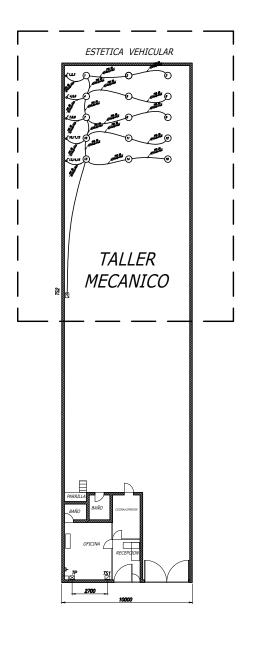


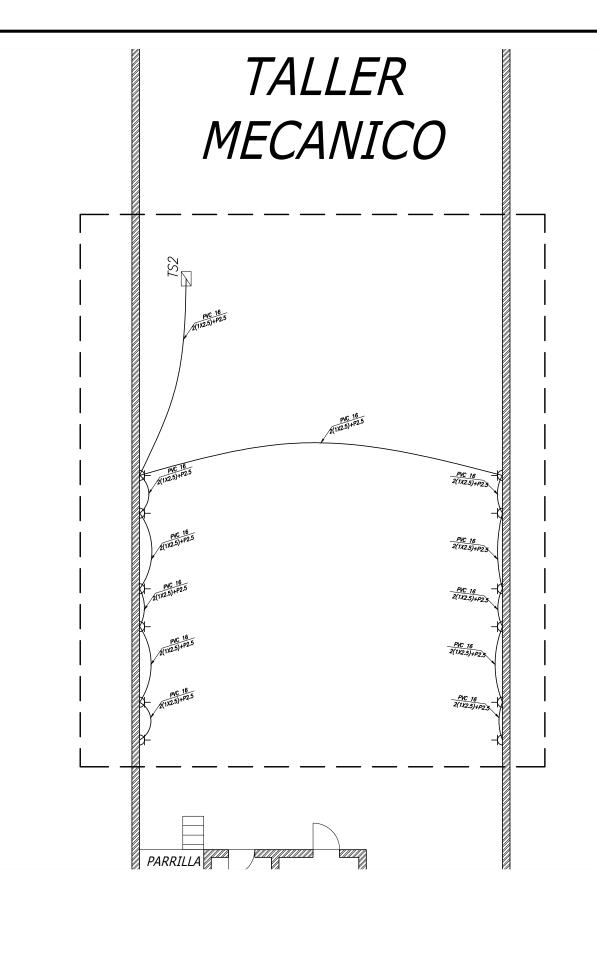


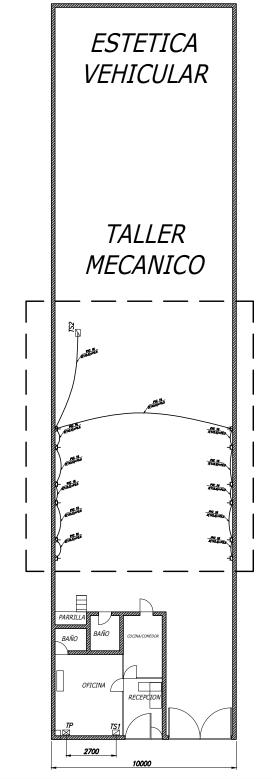


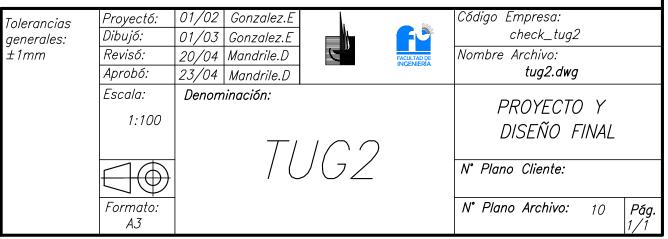


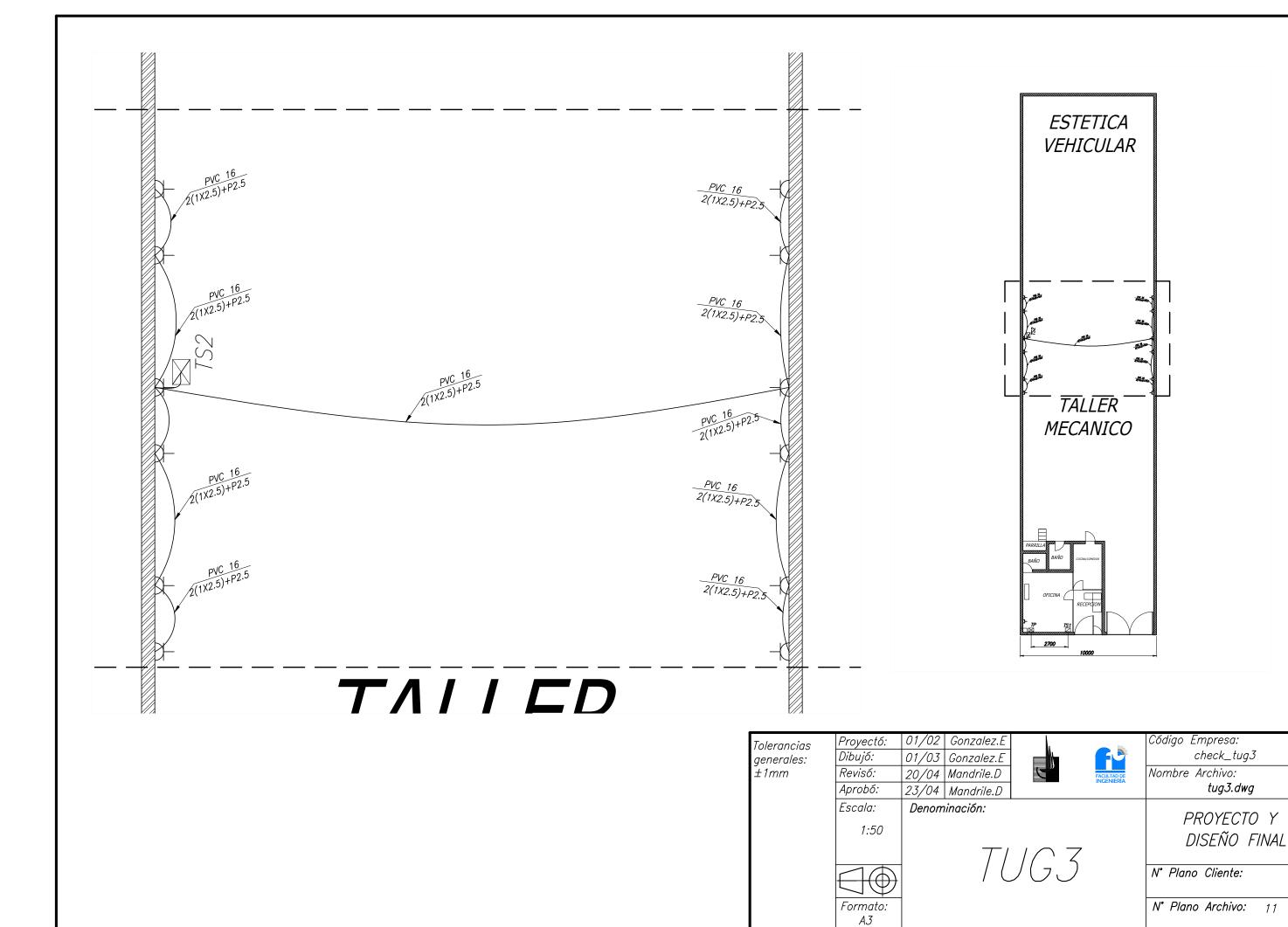
Tolerancias	Proyectó:	01/02	Gonzalez.E	\	_ No.	Código Empresa:
generales:	Dibujó:	01/03	Gonzalez.E			check_iug2
±1mm	Revisó:	20/04	Mandrile.D		FACULTAD DE INGENIERÍA	Nombre Archivo:
	Aprobó:	23/04	Mandrile.D		INGENIERIA	iug2.dwg
	Escala: 1:100	Denom	ninación:	/G2		PROYECTO Y DISEÑO FINAL N° Plano Cliente:
	Formato:	_	,	<u> </u>		N° Plano Archivo: 06 Pág

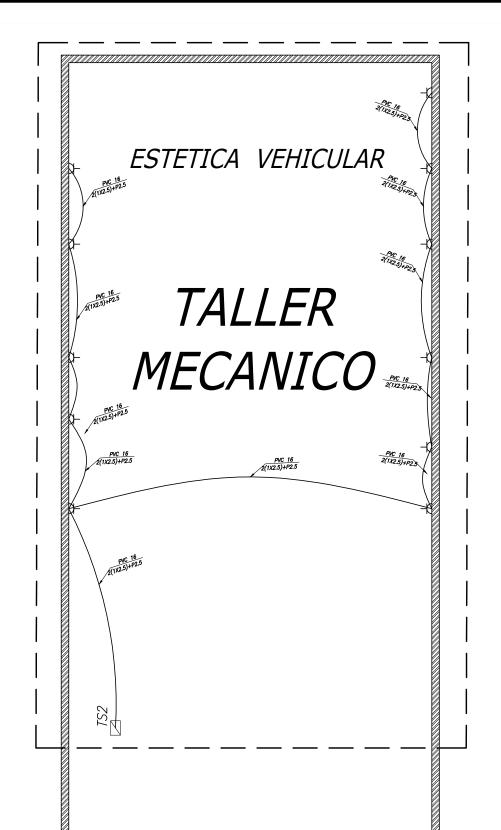


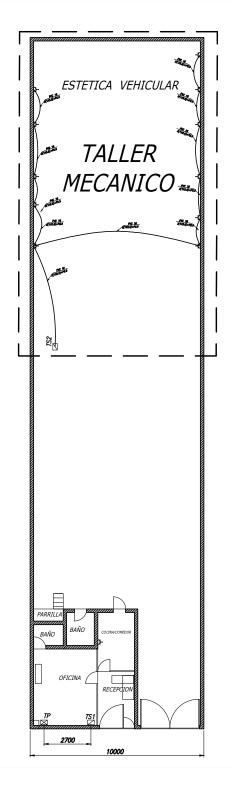


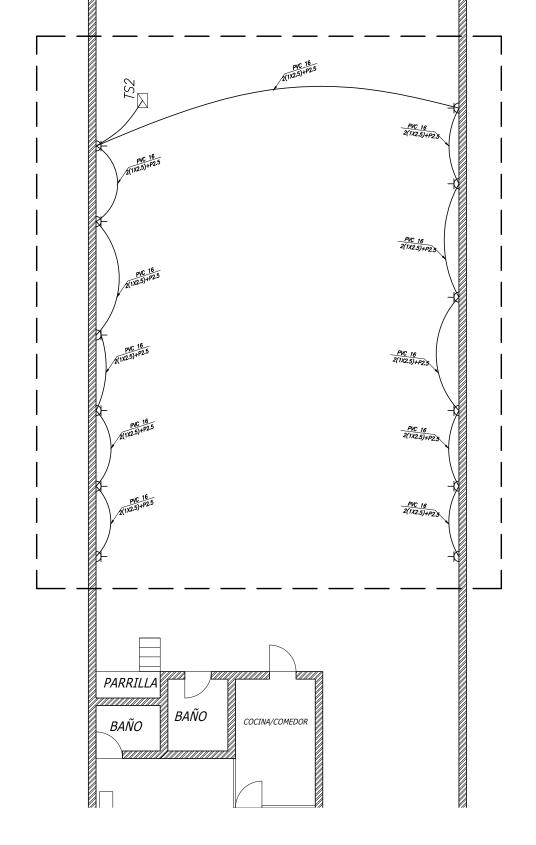

Tolerancias	Proyectó:	01/02	Gonzalez.E	<u> </u>	No.	Código Empresa:
generales:	Dibujó:	01/03	Gonzalez.E			check_iug4
±1mm	Revisó:	20/04	Mandrile.D		FACULTAD DE INGENIERÍA	Nombre Archivo:
	Aprobó:	23/04	Mandrile.D		INGENIERIA	iug4.dwg
	Escala: 1:100	Denom	ninación:	164		PROYECTO Y DISEÑO FINAL N° Plano Cliente:
	Formato: A3	-	7 C	/		N° Plano Archivo: 08 Pág.

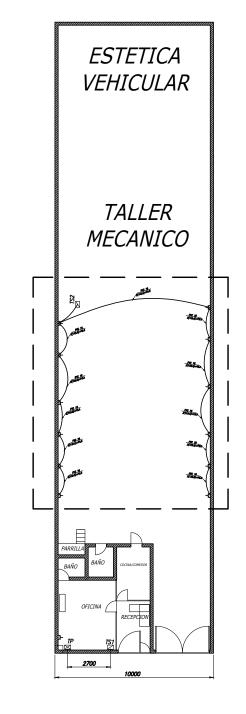

ESTETICA VEHICULAR **TALLER MECANICO**

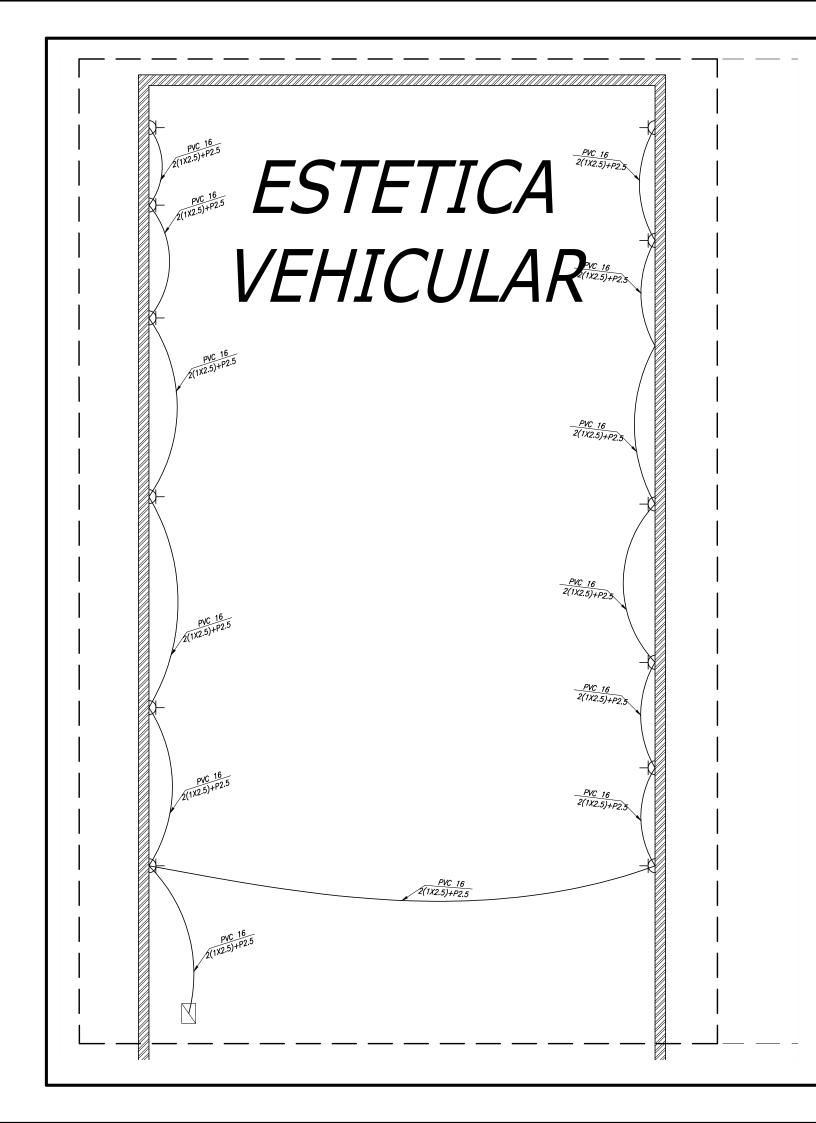


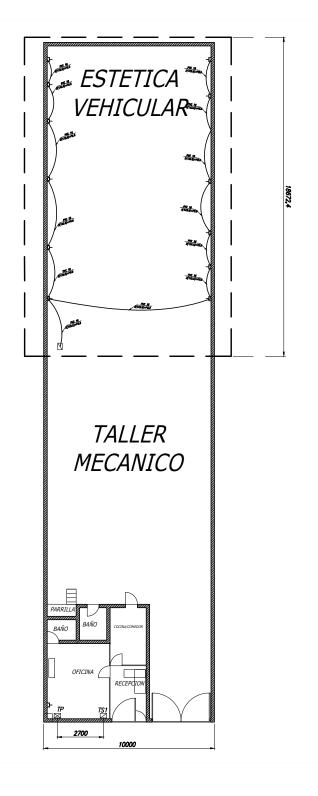

Tolerancias generales: ±1mm	Proyectó: Dibujó: Revisó: Aprobó:	01/02 Gonzalez.E 01/03 Gonzalez.E 20/04 Mandrile.D 23/04 Mandrile.D	 , 💸	Código Empresa: check_iug5 Nombre Archivo: iug5.dwg
	Escala: 1:100	Denominación:		PROYECTO Y DISEÑO FINAL
	Formato: A3	1063)	N° Plano Cliente: N° Plano Archivo: 09 Pág. 1/1

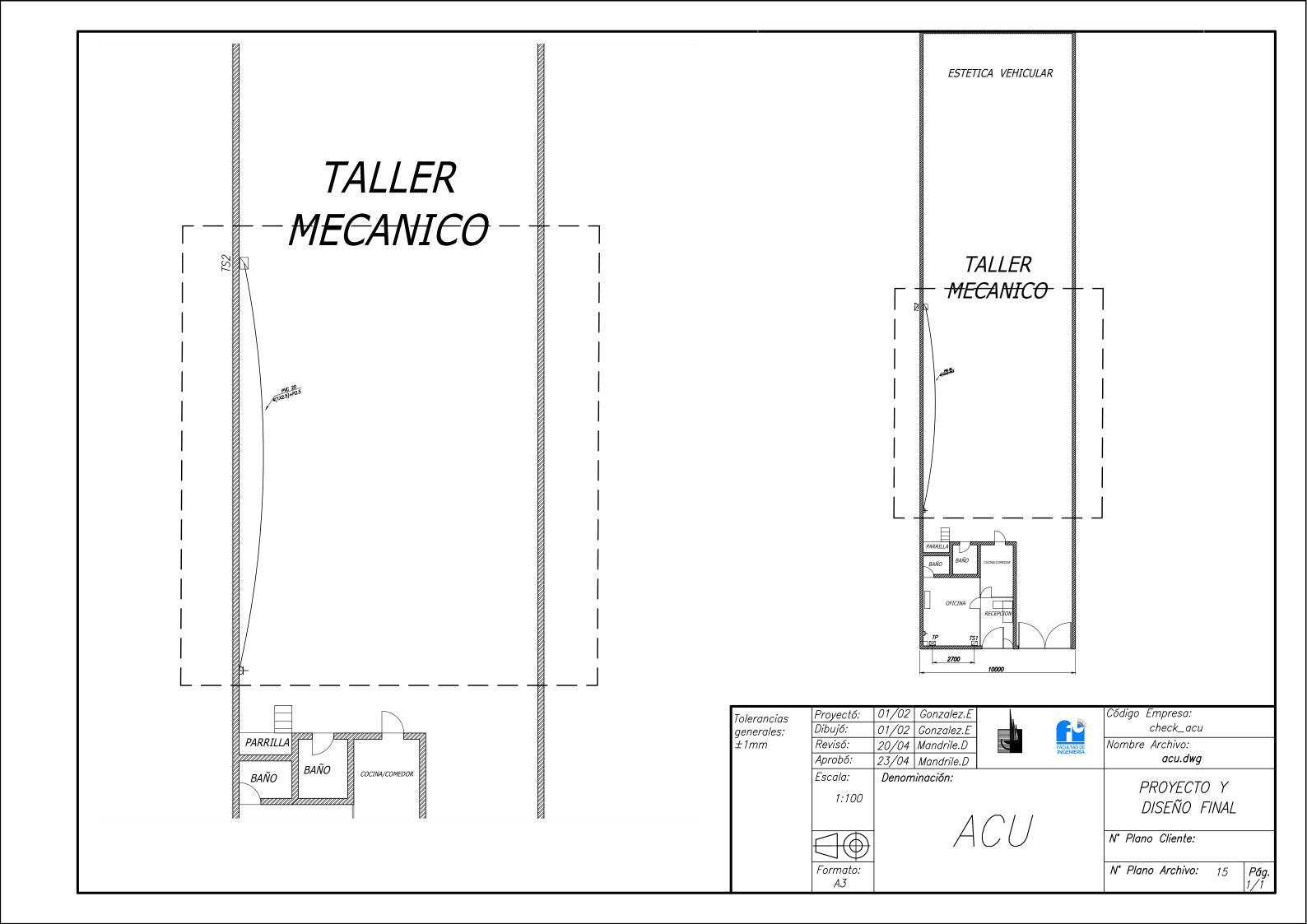







Tolerancias generales: ±1mm	Proyectó: Dibujó: Revisó: Aprobó:	/		4 N	FACULTAD DE INGENIERÍA	Código Empresa: check_tug4 Nombre Archivo: tug4.dwg
	Escala: 1:100	Denom	inación:	JG4	PROYECTO Y DISEÑO FINAL N° Plano Cliente:	
	Formato:	-	/ (164		N° Plano Cliente: N° Plano Archivo: 12


TALLER MECANICO



Tolerancias generales: ±1mm	Proyectó: Dibujó: Revisó: Aprobó:				FACULTAD DE INGENIERÍA	Código Empresa: check_tue Nombre Archivo: tue2.dwg
	Escala: 1:100	Denom	ninación:	<i>IF 2</i>		PROYECTO Y DISEÑO FINAL N° Plano Cliente:
	Formato:		/ (<i>)</i>		N° Plano Archivo: 13 Pág.

Tolerancias generales: ±1mm	Proyectó: Dibujó: Revisó: Aprobó:	01/02 01/03 20/04 23/04	Gonzalez.E Mandrile.D		FACULTAD DE INGENIERÍA	Código Empresa: check_tue3 Nombre Archivo: tue3.dwg
	Escala: 1:100 Formato: A3	Denom	ninación:	JE3		PROYECTO Y DISEÑO FINAL N° Plano Cliente: N° Plano Archivo: 14 Pág. 1/1

