

FACULTAD DE CIENCIAS EXACTAS Y NATURALES Universidad Nacional de La Pampa

"Distribución de temperaturas y presiones en el manto litosférico del sur de Sudamérica al sur de los 36°S, a partir de datos químicos de elementos mayores en xenolitos ultramáficos"

CARABAJAL LABORDE, Milagros

TESINA PRESENTADA PARA OBTENER EL GRADO ACADÉMICO DE LICENCIADO EN GEOLOGÍA

SANTA ROSA (LA PAMPA)

ARGENTINA

<u>Prólogo</u>

Esta Tesina es presentada como parte de los requisitos para optar al grado Académico de Licenciado en Geología de la Universidad Nacional de La Pampa y no ha sido presentada previamente para la obtención de otro título en esta Universidad ni en otra Institución Académica. Se llevó a cabo en mi domicilio particular, durante el período comprendido entre junio y noviembre de 2020, bajo la dirección de Bertotto, Gustavo Walter y bajo la codirección de Ponce, Alexis Daniel.

Agradecimientos

- A la UNLPam por brindarme educación pública y gratuita.
- A mi director Walter Bertotto por su tiempo, correcciones y dedicación constante.
- A mi codirector Alexis Ponce por su buena voluntad, correcciones y dedicación constante.

A mi familia.

A mis amigos.

- A Sebastián y su familia.
- A mis compañeros y profesores.

RESUMEN

En esta tesina se presenta la distribución de temperaturas y presiones del manto litosférico del sur de Sudamérica a partir de datos químicos de xenolitos ultramáficos provenientes de 22 localidades. Las temperaturas obtenidas van desde 679°C a 1309°C y las presiones desde 9 a 29 kb. Las temperaturas más elevadas (mayores a 1200°C) fueron obtenidas de muestras de las localidades de Prahuaniyeu en Patagonia norte y Pali Aike en Patagonia austral, coincidiendo con la presencia de granate. Las menores temperaturas conciernen a Paso de Indios y Cerro Chenque en Patagonia norte y a Tres Lagos en Patagonia sur. Por otro lado, las estimaciones de empobrecimiento por fusión abarcan un amplio rango, desde 1,08 a 23,33%. Los menores grados de fusión pertenecen a Agua Poca en Payenia y los mayores a Paso de Indios en Patagonia norte, región que tiene la mayor amplitud de las estimaciones de fusión. En general no se observa una relación de las temperaturas con el grado de fusión. Las temperaturas y presiones permitieron obtener geotermas para cada zona e inferir que los xenolitos estudiados provienen de profundidades del manto de entre 30 y 70 km. Estas geotermas reflejan el volcanismo activo en el retroarco extraandino.

ABSTRACT

This thesis presents the distribution of temperatures and pressures of the lithospheric mantle of southern South America from chemical data of ultramafic xenoliths from 22 localities. The temperatures obtained range from 679° C to 1309°C and the pressures from 9 to 29 kb. The highest temperatures (greater than 1200°C) were obtained in samples from the localities of Prahuaniyeu in northern Patagonia and Pali Aike in southern Patagonia, coinciding with the presence of garnet. The lowest temperatures concern Paso de Indios and Cerro Chenque in northern Patagonia and Tres Lagos in southern Patagonia. On the other hand, the estimations of melting-related depletion cover a wide range, from 1.08 to 23.33%. The lowest degrees of melting belong to Agua Poca in Payenia and the highest to Paso de Indios in Northern Patagonia. Paso de Indios also has the greatest range of melting-related depletion estimates. In general, a relationship between temperatures and the degree of fusion is not observed. The temperatures and pressures made it possible to obtain geotherms for each zone and infer that the xenoliths studied come from depths of the mantle between 30 and 70 km. These geotherms reflect active volcanism in the extra-Andean back-arc.

<u>ÍNDICE</u>

PRÓLOGO1
RESUMEN
ABSTRACT
1. INTRODUCCIÓN
1.1. Ubicación del área de estudio
1.2. Marco Geotectónico
1.3. Manto terrestre
1.4. Termobarometría7
2. OBJETIVOS
3. MATERIALES Y MÉTODOS 10
3.1. Trabajo de gabinete
RESULTADOS
4. ANÁLISIS DE DATOS QUÍMICOS
4.1 Temperatura
4.2. Geotermas
4.3. Fusión
5. DISCUSIÓN
5.1. Estimaciones de temperatura y presión
5.2. Estimaciones de fusión
6. CONCLUSIONES
REFERENCIAS BIBLIOGRÁFICAS
APÉNDICE

1. INTRODUCCIÓN

1.1. Ubicación del área de estudio

El área de muestreo de los xenolitos del manto utilizados en este trabajo abarca localidades de las provincias de La Pampa, Mendoza, Río Negro, Chubut y Santa Cruz, en Argentina y de la región de Magallanes en Chile (Fig. 1). Esta zona se extiende desde los 37°01'S hasta los 52°01'S de latitud.

En la provincia de La Pampa los xenolitos provienen del Cerro Agua Poca; en Mendoza del Cerro Huanul; en Río Negro los xenolitos ultramáficos fueron muestreados en Comallo (= Cerro del Mojón), Laguna Fría, Traful, Estancia Álvarez, Prahuaniyeu, Cerro Medina, Cerro Chenque y Puesto Díaz. De Chubut se analizaron muestras de la zona de Paso de Indios (Cerro Cóndor = Cerro Chenque, Cerro Matilde y Cerro León), Cerro de los Chenques y Cerro Tortuga; de Santa Cruz, se estudiaron xenolitos de Cerro Clark, Estancia Sol de Mayo, Volcán Auvernia, Gobernador Gregores (= Estancia Poklepovic o Estancia Lote 17), Cerro Redondo, Tres Lagos, Cerro del Fraile y Pali-Aike. De la región de Magallanes se analizaron datos de Las Cumbres y Pali Aike.

Figura 1. Localidades con datos químicos de xenolitos ultramáficos utilizados. Imagen Google Earth.

1.2. Marco Geotectónico

A partir de la subducción de la placa de Nazca y Antártica debajo de la placa Sudamericana, durante el Cenozoico, se generó magmatismo de arco y retroarco al sur de los 33°S. Simultáneamente con el volcanismo de arco, se produjeron episodios volcánicos vinculados a movimientos extensionales en las regiones de retroarco e intraplaca, dando lugar a la presencia de basaltos alcalinos (Stern et al. 1990).

Los eventos más importantes generaron el Basalto Posadas en el Eoceno (~ 46°S a 50°S); la Meseta de Somuncura en el Oligoceno Superior a Mioceno Inferior (41°S a 43°S) y magmas de similar edad hasta los 46°S en Chubut; las lavas del Mioceno superior al Plioceno al este del punto triple de Chile (~46°S a 49°S) y la provincia magmática de Payenia (36°S a 38,5°S) (Kay et al. 2004).

El arco volcánico andino se distingue en una zona volcánica del sur (SVZ) desde los 39° a los 46°S y una zona volcánica austral (AVZ) de 49° a 53°S (Stern 1999) que están separadas por un gap de actividad volcánica (VAG) entre 46 y 49°S (Ramos 1999).

La SVZ y la AVZ están relacionadas con la subducción de la placa de Nazca y la Antártica, respectivamente. La unión entre estas dos placas y la de Sudamérica se produce en un punto triple situado a los 46,30° (Cande y Leslie, 1986; Forsythe et al., 1986). La VAG corresponde con la migración hacia el norte del punto triple, hace 14 Ma, a aproximadamente 50°S. De acuerdo con Ramos y Kay (1992) y Gorring et al. (1997), la subducción de la dorsal de Chile indujo una ventana astenosférica en la placa subducida la que coincide con la interrupción del arco volcánico. Es posible que otra dorsal (Aluk-Farallón) colisionara durante el Eoceno en la latitud de las provincias Chubut-Río Negro (Ramos y Kay, 1992; Kilian et al., 1997; Ramos y Aleman, 2000).

1.3. Manto terrestre

El manto terrestre representa aproximadamente el 83% del volumen y el 67% de la masa del planeta y comienza en la base de la corteza (~40 km), extendiéndose hasta el límite externo del núcleo (~2900 km) (Wilson 1989). Se puede dividir en: Manto Superior que se extiende desde la discontinuidad de Mohorovicic en el límite con la corteza hasta los ~410 km de profundidad, Zona de Transición desde ~410 km a ~660 km de profundidad y Manto Inferior de ~660 km a ~2900 km de profundidad (Helffrich y Wood 2001).

El manto está compuesto esencialmente por silicatos y óxidos de Fe, Mg y Al, siendo las rocas ultramáficas ricas en olivino magnesiano (Mg_2SiO_4) y piroxenos ($MgSiO_3$ y $CaMgSi_2O_6$) las más estables en el manto superior.

Basado en sus propiedades mecánicas, el manto terrestre está dividido en tres capas principales: manto litosférico (junto a la corteza forman la litosfera), astenosfera y mesosfera. El manto litosférico corresponde a la parte superior del manto y se diferencia de las demás capas por sus características geofísicas y geoquímicas. Esta parte superior es más rígida que la parte inferior debido a su menor temperatura y se extiende desde la base de la corteza hasta los ~100 a 200 km de profundidad. Tiene composición peridotítica constituida en promedio por olivino (60%), ortopiroxeno (30%), clinopiroxeno (5%) y una fase mineral aluminosa (5%) (Rollinson 2007). La fase aluminosa varía a distintas profundidades, desde peridotita en facies de plagioclasa (hasta ~40 km de profundidad) a peridotita en facies de espinela (de ~40 a ~80 km de profundidad) y peridotita en facies de granate (de ~80 a ~300 km de profundidad) (Palme y O'Neill 2014).

Las rocas del manto se manifiestan en la superficie terrestre en forma de macizos tectónicamente emplazados y xenolitos mantélicos. Los macizos alpinos y ofiolitas pertenecientes al primer grupo tienen una escala de muestreo amplia y tamaños que varían desde pocos metros a decenas de kilómetros (Bodinier y Godard 2014). Por otro lado, si bien los xenolitos son de tamaño pequeño y no nos brindan relaciones de campo, el análisis de los mismos permite obtener información importante sobre la estructura y composición del manto superior, y además dan evidencias directas de los procesos de fusión parcial y metasomatismo. Dentro de las rocas ultramáficas que componen los xenolitos se pueden encontrar harzburgitas, wehrlitas, lherzolitas, piroxenitas y dunitas, entre otras.

1.4. Termobarometría

La distribución de temperatura en la litosfera es un problema fundamental de la geodinámica; la interpretación de procesos petrológicos, tectónicos y geofísicos depende del grado de conocimiento de la distribución y variación de la temperatura en la litosfera. Existen varias maneras de estudiar el manto terrestre, una de ellas es a través de propiedades geofísicas (velocidad de ondas sísmicas, flujo calórico y densidad) y mediante

estimaciones cosmoquímicas como la composición del sol o condritos y además a partir de estudios petrológicos en rocas ultramáficas, como por ejemplo los complejos ultramáficos obductados y los xenolitos ultramáficos en rocas volcánicas transportados a superficie por el magma ascendente. La principal ventaja de los xenolitos ultramáficos es su rápida velocidad de ascenso comparada con el lento emplazamiento de los macizos ultramáficos, este rápido transporte permite que se encuentren en la superficie muestras del manto con relativamente poca alteración. De esta manera, la primera información sobre las variaciones de las condiciones físico-químicas con la profundidad proviene del estudio de xenolitos ultramáficos alojados en rocas volcánicas, a partir de los cuales se pueden inferir procesos ocurridos en condiciones de presión y temperatura mantélicas, que causaron modificaciones químicas y mineralógicas. La reconstrucción de estas modificaciones sufridas por los xenolitos, a partir de su residencia en el magma basáltico portador, es esencial cuando se pretende realizar inferencias geotermobarométricas.

La termobarometría permite hacer estimaciones de presión y temperatura de equilibrio a partir de geotermómetros y geobarómetros, utilizando la composición química de los minerales. En primer lugar, para poder estimar presiones y temperaturas, es necesario determinar las composiciones de elementos mayores de los xenolitos del manto a partir del estudio de secciones delgadas y análisis químicos puntuales a minerales.

Una vez obtenidos los datos químicos se calculan las presiones y temperaturas utilizando una combinación de termómetros y barómetros que están basados principalmente en el intercambio de elementos entre minerales coexistentes. Luego estos cálculos se pueden comparar con los resultados de otros termobarómetros para poder interpretarlos.

Como resultado de las estimaciones de presión y temperatura a partir de la geotermobarometría, se pueden inferir los tipos de fases alumínicas según el campo de estabilidad en el que caen las muestras (plagioclasa, espinela, granate), los procesos dominantes que controlaron la composición de los xenolitos, u obtener un modelo para la generación de magma, entre otros.

En este trabajo, se calcularon presiones y temperaturas con termómetros y barómetros adaptados a rocas ultramáficas, en particular se utilizaron las propuestas de Mercier (1980), Brey y Köhler (1990), Taylor (1998), Nimis y Taylor (2000) y Nimis y Grütter (2010). Por un lado, el geotermómetro de dos piroxenos de Brey y Köhler (1990) se basa en el intercambio de Fe, Ca y Na entre clinopiroxeno y ortopiroxeno para una presión determinada; el geotermómetro de dos piroxenos de Taylor (1998) está basado en el intercambio de Fe y Mg entre clinopiroxenos y ortopiroxenos en equilibrio; el termómetro

de Nimis y Grütter (2010) utiliza el contenido de Ca en ortopiroxeno; y el termómetro de Nimis y Taylor (2000) emplea las concentraciones de Ca, Na, K, Al, Cr, Ti y Fe en clinopiroxeno. Por otro lado, el geobarómetro de clinopiroxeno de Mercier (1980) utiliza las composiciones de Si, Al, Ti, Fe, Mg, Mn, Ca, Cr y Na.

Los geotermómetros permiten estimar temperaturas siempre que se disponga de una estimación independiente de la presión. Generalmente se acepta que el termómetro de dos piroxenos puede medir las estimaciones más confiables debido a una pequeña dependencia de la presión y el efecto relativamente pequeño de los componentes menores, específicamente hierro férrico (Nimis y Grütter 2010). El termómetro de dos piroxenos de Brey y Köhler (1990) (T_{BKN}) que utiliza los valores de hierro, calcio y sodio en clinopiroxenos y ortopiroxenos, ha representado durante mucho tiempo un estándar en estudios del manto y funciona bien con clinopiroxenos con contenido de Na de hasta 0,05 átomos por fórmula. Taylor (1998) demostró que el T_{BKN} tiende a sobreestimar la temperatura de las composiciones de peridotita y proporcionó una nueva versión, T_{TA98} , que incorporó correcciones mejoradas para componentes menores, específicamente Ti, Fe y Na. Esta discrepancia está estrictamente relacionada con el contenido de Na del clinopiroxeno, para las muestras más sódicas por ejemplo para contenido de Na_{cpx}= 0,38 apfu, la diferencia es de 180°C. A pesar de que tales muestras extremadamente sódicas son relativamente poco frecuentes en rocas ultramáficas derivadas del manto, este efecto debe considerarse como el más significativo para la elección de un termómetro que utilice la composición en piroxenos (Nimis y Grütter, 2010). El termómetro de Ca-en-Opx de Brey y Köhler (1990) (BKN_{ca-en-opx}) proporciona una alternativa potencial a la formulación de dos piroxenos de los mismos autores, utiliza el valor de Ca en ortopiroxeno. Sin embargo, se observaron desviaciones sistemáticas explicadas por una influencia del Na en el contenido de Ca en ortopiroxenos (Nimis y Grütter 2010). Además, muestra buena concordancia con el termómetro T_{TA98} en el rango de 1000-1400°C y un sesgo positivo a una temperatura más baja (hasta +90°, en promedio, a T_{TA98}=700°C) (Nimis y Grütter 2010). Estos autores presentaron una versión corregida (T_{Ca-en-opx} NG10) del termómetro BKN_{ca-en-opx}, útil para temperaturas menores a 900°C. Por otra parte, el termómetro basado en el intercambio de hierro y magnesio en clinopiroxeno de Nimis y Taylor (2000) (T_{NTcpx}) reproduce estimaciones muy similares al de Taylor (1998) con ±30° de diferencia entre los dos termómetros, ya que utilizan una expresión similar para la enstatita en clinopiroxenos y correcciones similares para compuestos menores (Nimis y Grütter 2010).

2. OBJETIVOS

Los objetivos principales de esta tesina son:

-Realizar una estimación de la distribución de temperaturas y presiones en el manto litosférico del sur de Sudamérica al sur de los 36°S, a partir de datos químicos de elementos mayores en xenolitos ultramáficos.

-Inferir los procesos primarios o secundarios que determinaron esos valores y distribución. Como objetivos secundarios se propone determinar si:

-Existe una distribución homogénea de las temperaturas en el manto litosférico del sur de Sudamérica,

-Las temperaturas calculadas reflejan procesos de fusión, calentamiento profundo o reequilibrio durante el entrampamiento y transporte.

-Los distintos termómetros y barómetros aportan conclusiones homogéneas o comparables.
-Las temperaturas y presiones se condicen con la asociación mineralógica de las muestras y con las estimaciones del grado de fusión.

Si bien existen trabajos previos de más de 20 localidades con datos de elementos mayores en minerales de los xenolitos del manto en Patagonia, de los cuales algunos son más abarcativos (Rivalenti et al. 2004a, Bjerg et al. 2004 y Melchiorre et al. 2015), no se ha efectuado una recopilación que ponga de manifiesto variaciones regionales como la que se realizará en este trabajo.

3. MATERIALES Y MÉTODOS

3.1. Trabajos de gabinete

Los trabajos de gabinete consistieron en recopilación de bibliografía, cálculos de temperaturas, presiones y estimación de grados de fusión en xenolitos ultramáficos, análisis de los resultados y evaluación conjunta de los datos.

Se recopilaron y estudiaron antecedentes geológicos de la zona de trabajo (magmatismo cenozoico y xenolitos ultramáficos asociados del sur argentino-chileno) y composiciones de elementos mayores en minerales de xenolitos.

A partir del análisis bibliográfico se seleccionaron datos químicos que fueron utilizados para calcular temperaturas y presiones mediante termómetros adaptados a rocas

ultramáficas, siguiendo las propuestas de Brey y Köhler (1990), Taylor (1998), Nimis y Grütter (2010) y Nimis y Taylor (2000). Los cálculos de temperaturas y presiones se realizaron empleando las planillas de cálculo PTEXL desarrolladas por Thomas Stachel (2019) en base a Köhler (1994) y disponibles en https://cms.eas.ualberta.ca/team-diamond/. De estos termómetros se seleccionó el de Taylor (1998) debido a que proporciona las estimaciones más confiables ya que puede reproducir las temperaturas de los experimentos en sistemas peridotíticos naturales (Nimis y Grütter 2010). Para obtener las presiones se siguió a Mercier (1980) debido a que la alternativa de cálculo en facies de espinela es la ecuación de Köhler y Brey (1990) utilizando el contenido de Ca en olivino que requiere de análisis especiales. En el caso de la muestras con granate se utilizó el barómetro de Brey y Köhler (1990) que emplea la concentración de Al en ortopiroxeno coexistiendo con granate junto con otros elementos.

Asimismo, se calcularon los porcentajes de empobrecimiento por fusión en espinela con el fin de relacionarlos con las estimaciones de temperatura, para lo cual se utilizaron las ecuaciones desarrolladas por Batanova et al. (1998) y Hellebrand et al. (2001). Estas ecuaciones utilizan el contenido de Cr de las espinelas y para aplicarlas se emplearon planillas de cálculo.

En primer lugar, los datos recopilados se copiaron a una planilla Excel con las muestras de las 22 localidades seleccionadas. El total de muestras ascendió a 655 y se consideró la litología además de los valores de elementos mayores en forma de óxidos correspondientes a cada mineral (ol, opx, cpx, sp y grt). Se descartaron las muestras que no tuvieran análisis completos de las fases constituyentes y los que contenían minerales hidratados en la asociación mineralógica.

En segundo lugar, se utilizó la planilla PTEXL en la cual se cargaron los datos de las muestras elegidas anteriormente y se procedió al cálculo de las temperaturas y presiones con los termómetros y barómetros seleccionados. Para realizar estas estimaciones se seleccionó respectivamente una temperatura y una presión fijas, que utilizan las ecuaciones para obtener las estimaciones. Para las estimaciones de presión, en el caso de las muestras en facies de espinela se utilizó la temperatura de 1000°C y para las muestras con granate 1200°C. En el caso de los cálculos con los termómetros se fijó una presión de 15kb para las muestras con espinela y 20kb para las muestras con granate. Esta decisión fue tomada en base a los campos de estabilidad de la espinela y granate, en particular las estimaciones de Bjerg et al. (2009), donde se puede observar que todas las muestras tienen en general

valores aproximados de entre 1000° y 1200°C y 15kb a 20kb de presión según la presencia o no de granate.

Para realizar las estimaciones de presión con las fórmulas de Mercier (1980), se ordenaron los datos de los óxidos para posteriormente calcular los cationes, y por último, obtener en una nueva planilla las presiones separadas para clinopiroxenos y ortopiroxenos de todas las muestras.

El grado de fusión parcial (F) se estimó, también, en base al número de cromo (#Cr) de las espinelas utilizando la ecuación empírica de Hellebrand et al. (2001), donde F=[0,1 * ln (#Crspl + 0,24)]. Ello fue corroborado con la ecuación alternativa desarrollada por Batanova et al. (1998), donde F= [9,71 * ln (#Crspl) + 25,8].

Una vez que se obtuvieron los valores de temperatura, presión y grado de fusión, se agruparon las muestras de las distintas localidades en zonas para su posterior análisis. Las zonas fueron determinadas a partir de la posición geográfica de las localidades y trabajos de otros autores. De esta manera, las 22 localidades seleccionadas fueron agrupadas en las siguientes cinco zonas, de norte a sur:

- Payenia: Agua Poca y Cerro Huanul.
- Patagonia norte: Comallo (Cerro del Mojón), Laguna Fría, Traful, Estancia Álvarez, Cerro Chenque, Puesto Díaz, Prahuaniyeu, Cerro Medina y Paso de Indios.
- Patagonia central: Cerro de los Chenques, Cerro Tortuga y Cerro Clark.
- Patagonia sur: Estancia Sol de Mayo, Volcán Auvernia, Gobernador Gregores, Cerro Redondo y Tres Lagos.
- Patagonia austral: Cerro del Fraile, Las Cumbres y Pali Aike.

Posteriormente se eliminaron las muestras con datos anómalos, lo que dejó un total de 438 muestras con el propósito de generar distintos gráficos para analizar e interpretar.

De las presiones calculadas, se seleccionaron las obtenidas con la ecuación de Mercier (1980) correspondiente a clinopiroxenos debido a que sus resultados muestran una variación con la presión más realista que los de ortopiroxeno.

Por último, si bien los resultados del grado de fusión son comparables, se seleccionaron los estimados según la ecuación de Batanova et al. (1998) debido a que tiene un rango de aplicación más amplio teniendo en cuenta el contenido de Cr.

RESULTADOS

4. ANÁLISIS DE DATOS QUÍMICOS

4.1 Temperatura

Los valores obtenidos se presentan en el Apéndice (Tabla 1). En el siguiente histograma se representa la temperatura en relación al porcentaje de muestras en cada localidad estudiada. La temperatura fue dividida en rangos de 50° cada uno para valores de entre 650°C y 1350°C (Fig. 2). Se puede observar que existe una concentración de las temperaturas en el rango de 800°C a 1000°C con un máximo en 900 a 950°C.

Figura 2. Histograma de temperaturas en las distintas regiones. Rojo: Payenia, azul: Patagonia norte, naranja: Patagonia central, gris: Patagonia sur, verde: Patagonia austral.

Los valores de las temperaturas calculadas en la zona de Payenia van desde 755°C a 1187°C (Apéndice-Tabla 1), la localidad de Agua Poca tiene una distribución entre los rangos de 750-800°C y 1000-1050°C aunque la mayoría están entre 850 y 1050°C. En Huanul las temperaturas mayores están concentradas en el rango de 900-950°C y el ámbito de variación se extiende hasta los 1150-1200°C.

En Patagonia norte se obtuvieron valores de entre 679°C y 1203°C (Apéndice-Tabla 1). Las localidades de esta zona tienen una amplia distribución de valores, de todos modos se destacan, por un lado Paso de Indios, Cerro Chenque y Puesto Díaz con los menores valores (650-750°C) y por otro lado Prahuaniyeu con la mayoría (60%) de las muestras entre 1100 y 1250°C. Laguna Fría cuenta con una sola muestra, de allí que aparece destacada en el rango de 1100 a 1150°C.

En Patagonia central el valor mínimo de temperatura es de 715°C y el máximo de 1127°C (Apéndice-Tabla 1), la mayoría de las muestras de Cerro Clark se agrupan en kis rangos de temperaturas menores (700-850°C), la mayor parte de las de Cerro Tortuga entre 750 y 900°C y el 58% de las muestras de Cerro de los Cheques en rangos de temperaturas algo más elevadas que el resto (900-1050°C).

En la zona de Patagonia sur los valores van desde 762°C a 1085°C (Apéndice-Tabla 1). Las temperaturas se concentran mayormente entre los 900°C y 1000°C, se pueden destacar las localidades Cerro Redondo con una distribución más amplia de valores y Tres Lagos con temperaturas más bajas entre 750°C y 800°C.

Por último, en la zona de Patagonia austral se observan temperaturas de 742°C a 1309°C (Apéndice-Tabla 1), dentro de este rango en Cerro del Fraile están concentradas entre 850° y 950°C y en la localidad de Pali Aike se muestrearon los xenolitos con los valores de temperatura mayores para esta región.

4.2. Geotermas

Se realizaron gráficos de variación de la temperatura con la profundidad (presión) para cada zona, los cuales se construyeron con los datos correspondientes al termómetro de Taylor (1998) y al barómetro de Mercier (1980) en clinopiroxenos (Apéndice-Tabla 1). Se grafican, además, las líneas de tendencia lineales las que representarían un sector de la geoterma de cada localidad.

En la región de Payenia las presiones van desde 10 kbar a 22 kbar (Fig. 3), los valores mayores corresponden principalmente a las muestras de Cerro Huanul (Apéndice-Tabla 1). La línea de tendencia de Payenia se ubica entre las geotermas de 60 y 90mw/m².

Figura 3. Geoterma en la región de Payenia. Con fines comparativos se muestran las geotermas de 90mw/m^2 (A), 60mw/m^2 (B) y 40mw/m^2 (C) tomadas de Bjerg et al. (2009).

En Patagonia norte las presiones estimadas están entre los 10 kbar y 24 kbar. Los valores mayores corresponden a la localidad de Prahuaniyeu y los valores menores se encuentran en la zona de Paso de Indios (Apéndice-Tabla 1, Fig. 4). La línea de tendencia de esta zona conecta dos grupos, uno ubicado sobre la geoterma de 60mw/m² y el otro de mayores temperaturas.

Figura 4. Geoterma en la región de Patagonia norte. Con fines comparativos se muestran las geotermas de 90mw/m^2 (A), 60mw/m^2 (B) y 40mw/m^2 (C) tomadas de Bjerg et al. (2009).

En Patagonia central las presiones obtenidas van desde 9 kbar a 23 kbar (Fig. 5). Las muestras de la localidad de Cerro de los Chenques presentan los valores mayores, que van desde 12 kbar a 23 kbar, en tanto que las de los cerros Clark y Tortuga tienen las presiones menores, desde los 9 kbar, alcanzando valores máximos de 15 kbar y 21 kbar respectivamente (Apéndice-Tabla 1). La línea de tendencia para los xenolitos de Patagonia central es algo mayor a la geoterma de 60mw/m².

Figura 5. Geoterma en la región de Patagonia central. Con fines comparativos se muestran las geotermas de 90mw/m^2 (A), 60mw/m^2 (B) y 40mw/m^2 (C) tomadas de Bjerg et al. (2009).

En Patagonia sur las presiones abarcan desde 10 kbar a 29 kbar, siendo las localidades Cerro Redondo y Gobernador Gregores las que tienen las presiones menores de 10 kbar, seguidas de Tres Lagos con valor mínimo de 11 kbar y máximo de 21 kbar. Por otra parte, Gobernador Gregores y Estancia Sol de Mayo poseen los valores mayores entre 25 y 29 kbar; por último el volcán Auvernia tiene un rango de valores de 17 a 20 kbar (Apéndice-Tabla 1, Fig. 6). Al igual que para Patagonia central, la línea de tendencia para los xenolitos de Patagonia sur es algo mayor a la geoterma de 60mw/m².

Figura 6. Geoterma en la región de Patagonia sur. Con fines comparativos se muestran las geotermas de 90mw/m^2 (A), 60mw/m^2 (B) y 40mw/m^2 (C) tomadas de Bjerg et al. (2009).

Las muestras de Patagonia austral tienen presiones variables entre 9 kbar y 29 kbar, dentro de este rango se destaca la localidad de Pali Aike cuyas muestras cubren todo el ámbito de variación del área. Por su parte, Cerro del Fraile y Las Cumbres tienen rangos similares de presiones de 14-25 kbar y 13-23 kbar respectivamente (Apéndice-Tabla 1, Fig. 7). La línea de tendencia para los xenolitos de Patagonia austral es algo mayor a la geoterma de 60mw/m².

Figura 7. Geoterma en la región de Patagonia austral. Con fines comparativos se muestran las geotermas de 90mw/m^2 (A), 60mw/m^2 (B) y 40mw/m^2 (C) tomadas de Bjerg et al. (2009).

4.3. Fusión

Los grados de fusión obtenidos según las ecuaciones de Batanova et al. (1998) y Hellebrand et al. (2001) se presentan en el Apéndice (Tabla 1). Con los valores de fusión según Batanova et al. (1998) y de temperatura (Taylor 1998) se realizaron comparaciones tratando de identificar alguna posible relación.

En Payenia el porcentaje de fusión varía entre 1,08% y 12,55% para los xenolitos de Agua Poca y de 2,39% a 10,26% para los de Cerro Huanul (Apéndice-Tabla 1, Fig. 8). Se observa un aumento del grado de fusión con el aumento de la temperatura aunque esta correlación es muy débil.

Figura 8. Fusión (Batanova 1998) vs temperatura (Taylor 1998) en la región de Payenia.

En Patagonia norte el porcentaje mínimo de fusión es de 2,31% en Prahuaniyeu y el máximo de 23,33% en Paso de Indios. Los valores de las distintas localidades de esta región son: Comallo 9,60-18,26%, Laguna Fría 13,87%, Traful 18,49%, Prahuaniyeu 2,31-18,83%, Estancia Álvarez 17,30-18,27%, Paso de Indios 8,36-23,33%, Cerro Medina 12,43-22,95%, Cerro Chenque 13,81-18,60% y Puesto Díaz 11,48-18,32% (Apéndice-Tabla 1, Fig. 9). Se infiere una disminución del grado de fusión con el aumento de la temperatura aunque hay dispersión de los datos.

Figura 9. Fusión (Batanova 1998) vs temperatura (Taylor 1998) en la región de Patagonia norte.

En Patagonia central las fusiones obtenidas van desde 2,13% a 18,77%, siendo los porcentajes mayores los de Cerro de los Chenques que van desde 2,33% a 18,77%, en la localidad de Cerro Tortuga están entre 2,70-16,83% y los menores valores en Cerro Clark con 2,13% hasta 10,64% de fusión (Apéndice-Tabla 1, Fig. 10). Los datos del grado de fusión y de temperatura no se correlacionan.

Figura 10. Fusión (Batanova 1998) vs temperatura (Taylor 1998) en la región de Patagonia central.

En Patagonia sur hay grados de fusión desde 3,60% hasta 20,94% (Apéndice-Tabla 1, Fig. 11), para Estancia Sol de Mayo se obtuvieron los valores mayores que van desde 15,97% a 20,94%, Cerro Redondo tiene un rango de 4,85-15,94%, Gobernador Gregores 6,06-18,71%, Volcán Auvernia 11,66-15,01% y por último, los valores menores se obtuvieron en Tres Lagos desde 3,60 a 17,67%. No se observa ninguna correlación entre los datos.

Figura 11. Fusión (Batanova 1998) vs temperatura (Taylor 1998) en la región de Patagonia sur.

En la zona de Patagonia austral la fusión está entre 7,76% y 20,07% (Apéndice-Tabla 1). El Cerro del Fraile tiene los valores menores que van desde 7,76% a 17,69%, en Las Cumbres hay porcentajes de fusión entre 11,10% y 19,60% y en Pali Aike están los mayores valores en el rango de 10,81-20,07% (Apéndice-Tabla 1). No se observa ninguna correlación entre los datos (Fig. 12).

Figura 12. Fusión (Batanova 1998) vs temperatura (Taylor 1998) en la región de Patagonia austral.

5. DISCUSIÓN

5.1. Estimaciones de temperatura y presión

Las temperaturas calculadas para los xenolitos estudiados basadas en análisis de los elementos mayores se muestran en el Apéndice (Tabla 1). Como se puede observar en la figura 13, las temperaturas al sur de los 36°S, en el conjunto de las regiones estudiadas, tienen un rango amplio de variación entre los 679 y 1309°C, por su parte las presiones estimadas varían desde 9 a 29 kbar.

Figura 13. Estimaciones de temperatura y presión de todas las muestras estudiadas.

En comparación con las estimaciones de temperatura obtenidas con el geotermómetro de dos piroxenos Taylor (1998) (T_{TA98}) para peridotitas de la Patagonia, el termómetro de Brey y Köhler (T_{BKN}) (el más utilizado) aporta valores variablemente mayores, sin embargo, tiene correlación directa con el termómetro T_{TA98} . Lo mismo ocurre con el termómetro de Nimis y Taylor (NTcpx) que proporciona valores similares levemente menores a los de T_{TA98} , como se puede observar en la figura 14. Los valores obtenidos con el termómetro de Nimis y Grütter (2010) muestran dispersión (figura 14).

Figura 14. Comparación de temperaturas obtenidas con los distintos termómetros utilizados.

En Payenia los xenolitos de ambas localidades tienen temperaturas (utilizando el termómetro de Taylor, 1998) que oscilan en el rango de los 750-1045°C y presiones según el barómetro de Mercier (1980) de entre 10 y 22 kbar. Estos valores se pueden comparar con los resultados obtenidos por Bertotto et al. (2013) y Bertotto et al. (2015) en los que se utilizaron los mismos geotermobarómetros y se obtuvieron valores similares de 772-1034°C y 10-20 kb para Agua Poca y de 783-1194°C y 8,1-21,8 kb de presión para Huanul. Estos resultados congruentes nos indican que los xenolitos de esta región podrían derivar de una sección del manto ubicada entre los 30 y 70 km de profundidad.

En Patagonia norte, los resultados de este trabajo son comparables con los obtenidos para Comallo (822-871°C), Cerro Chenque (735-911°C) y Puesto Díaz (742-885°C) con las temperaturas de equilibrio usando el termómetro de dos piroxenos de Brey y Köhler (1990) a una presión de 15 kbar, por Mundl et al. (2015) donde se indican temperaturas de hasta 950°C, siendo los rangos de 846-911°C (Comallo), 748-946°C (Co. Chenque) y 776-861°C (Puesto Díaz).

Por otro lado, la única muestra analizada de la localidad de Laguna Fría tiene una temperatura de 1132°C y presión de 23 kb, estos valores altos de temperatura y presión podrían corresponderse con una facies de granate, sin embargo la muestra no presenta granate en la moda. Esta aparente incongruencia se puede resolver observando las texturas presentes, como ocurre en el trabajo de Bjerg et al. (2005), donde los autores si bien obtuvieron valores de 1237°C y 20 kb, se basan en la presencia de texturas simplectíticas de piroxeno/Cr-espinela para explicar que estas rocas provienen de la zona de transición granate-espinela. Es decir, hubo una desestabilización en el granate durante el ascenso a profundidades de estabilidad de la espinela y como químicamente todavía no se estabilizó, los cálculos estiman temperaturas y presiones altas.

En Estancia Álvarez se obtuvieron valores de temperaturas que varían entre 831 y 933°C y presiones entre 21 y 24 kb; para esta zona Rivalenti et al. (2004) obtuvieron resultados de 888°C a 1001°C con valores mayores de hasta +50-70°C porque fueron calculadas con el termómetro de Brey y Köhler (1990) a una presión fija de 18 kb.

En Prahuaniyeu el termómetro de dos piroxenos de Taylor (1998) dio resultados en general entre 804-1203°C en muestras con espinela (804-1161°C), espinela-granate (1013-1203°C) y granate (1175-1179°C). El barómetro de clinopiroxeno de Mercier (1980) dio presiones altas de 18-24 kb. Para esta localidad, Bjerg et al. (2009) estimaron temperaturas de entre 1061 y 1221°C según el termómetro Al-ortopiroxeno-granate de Brey y Köhler (1990), remarcando que las muestras con granate son mayores a 1200°C. Por otro lado, los valores de presiones de 11,8-24 kb, fueron obtenidos con el barómetro de Köhler y Brey (1990) y tienen un rango más amplio respecto a las obtenidas en este trabajo.

Para los xenolitos de Cerro Medina se calcularon valores de 773 a 988°C de temperatura y 12 a 21 kb de presión que se corresponden con los valores obtenidos anteriormente por Orlandi (2015) con el mismo termómetro y barómetro. Los valores de presión colocan a los xenolitos en el campo de facies de espinela e indican una tendencia a rápido ascenso que no permitió el reequilibrio de los minerales dentro de la roca (Orlandi, 2015).

En Paso de Indios las temperaturas se encuentran en el rango de 679-962°C y las presiones entre 10 y 22 kb y se pueden comparar con los valores obtenidos por Ponce et al. (2015) para esta localidad con el termómetro de Taylor (T_{TA98}) a 15 kb, las que dan entre 782 y 885°C y las proporcionadas con el termómetro de Ca en ortopiroxenos de Brey y Köhler (1990) donde obtuvieron un rango más restringido entre 861-892°C. Las temperaturas obtenidas en los xenolitos de Paso de Indios dan valores más bajos que la mayoría de los estudiados en otras localidades patagónicas, esto sugiere que las muestras estudiadas provienen de manto litosférico más frío y de sectores menos profundos del manto. Las presiones calculadas con el barómetro de Mercier (1980) varían entre 14-18 kbar, en un rango más restringido que el calculado para este trabajo. Estos valores indican que los xenolitos provienen de sectores de hasta 60 km de profundidad que fueron sometidos a un flujo de calor bajo respecto a otras áreas, durante el Cenozoico (Ponce et al. 2015).

En Patagonia central, para Cerro de los Chenques y Clark, se obtuvieron temperaturas de 844-942°C y 704-885°C respectivamente. Comparando estas mismas muestras con los resultados obtenidos por Dantas et al. (2009) para la misma región se puede observar que estos autores obtuvieron temperaturas mayores (+50°C-60°C) con el termómetro de dos piroxenos de Brey y Köhler (1990) a una presión de 15 kb, con rangos de 886-1026°C (Cerro de los Chenques) y 760-952°C (Cerro Clark).

En el Cerro Tortuga, las temperaturas y presiones obtenidas en las muestras utilizadas fueron de 753-1127°C y 9-21 kb. Brovelli (2016) utilizando el mismo termómetro y barómetro obtuvo temperaturas de 764-908°C con diferencias de hasta $\pm 25^{\circ}$, y presiones hasta ± 6 kb. Se observa que las presiones en general son menores que las demás localidades de la región central.

En Patagonia sur, la Estancia Sol de Mayo tiene valores estimados de temperatura entre 932-1011°C y presiones de 18 a 26 kb. Para estas muestras, los valores obtenidos por Melchiorre et al. (2015) fueron de 1003-1040°C según el termómetro de dos piroxenos de Brey y Köhler (1990) y presiones con diferencia de hasta -8 kb en el 50% de las muestras comparadas y \pm 10-25 kb en el 50% restante, que fueron calculadas con el geobarómetro de Ca entre olivino y clinopiroxeno de Köhler y Brey (1990). Algunos de los valores de las presiones estimadas por Melchiorre et al. (2015) dan números excesivamente altos y bajos, de todos modos la mayoría de las muestras caen en el campo de estabilidad de la espinela

entre 12-20 kb. Las estimaciones de temperaturas se comparan con los rangos de otras localidades en Patagonia central.

En xenolitos provenientes del Volcán Auvernia las temperaturas varían desde 901°C a 1007°C y las presiones desde 17 a 20 kb; para la misma región según Vásquez et al. (2012) las temperaturas (de Brey y Köhler, 1990) están en el rango de 959-1085°C con diferencias de hasta +90°C y las presiones (según Putirka, 2008) en un rango menor entre 8,3-14.5 kb. En la localidad de Gobernador Gregores las temperaturas estimadas varían entre los 730 y 1027°C y las presiones entre los 16 y 20 kb, en Rivalenti et al. (2004b) los valores calculados con el termómetro de Brey y Köhler (1990) a 16 kb son similares y están entre 754-1090°C y las presiones calculadas mediante el uso del geobarómetro Ca-en-Ol de Köhler y Brey (1990) dieron 11-25 kb. Por otro lado, en el trabajo de Rivalenti (2004) los valores fueron calculados con el termómetro a 18 kb y los valores son mayores y varían entre 1083 y 1174°C, con respecto a los 967-1025°C calculados para las mismas muestras en este trabajo (con el termómetro de T_{TA98}).

Para Cerro Redondo se obtuvieron valores de temperaturas de 843-1085°C y presiones de 12-25 kb, para la misma localidad Rivalenti et al. (2004) estimaron las temperaturas con el termómetro de Brey y Köhler (1990) con presión fija a 18 kb, por lo que dieron valores mayores entre 940-1193°C con diferencias de +90°C.

Los valores obtenidos para Tres Lagos varían entre 686°C y 1052°C y las estimaciones de presiones de 11-21 kb. Para esta localidad Ntaflos et al. (2006) estimaron temperaturas en el rango de 728-1040°C con el termómetro de dos piroxenos de Brey y Köhler (1990) y presiones de 10-17 kb utilizando el barómetro de Mercier et al. (1980). Estos valores de temperatura y presión reflejan un ambiente relativamente frío y de poca profundidad.

En Patagonia austral, en el Cerro del Fraile las temperaturas obtenidas fueron 813-986°C y presiones de 14-25 kb, para estas mismas muestras según Faccini et al. (2013) los valores a partir del termómetro de Brey y Köhler (1990) varían entre 872 y 1006°C, en general tienen valores mayores, de hasta 48°C de diferencia. Comparando con los valores obtenidos por Wang et al. (2007) se puede observar que las de este trabajo dan valores entre 888-1011°C y las de estos autores 925-1029°C lo que da una diferencia menor que con Faccini et al. (2013), con valores mayores de hasta 37°C de diferencia.

El Cerro Las Cumbres tiene temperaturas estimadas en un rango estrecho de 909-956°C y presiones de 13-23 kb, lo que se compara con los obtenidos por Rivalenti et al. (2004) con valores algo mayores de 973-1078°C y las presiones obtenidas por Barbieri (1997) de 14-17 kb.

Por último, en Pali Aike las temperaturas van de 790 a 1309°C y las presiones de 9 a 29 kb, para la misma localidad Barbieri (1997) calculó un rango de presiones similar de 9-23 kb y un rango de temperaturas sensiblemente menor, de 670-1170°C. Además, también para Pali Aike, Douglas et al. (1987) estimaron temperaturas a partir de la distribución de Fe-Mg en piroxenos según Wells (1977) que dieron como resultado valores más elevadas para la zona (1099-1419°C), las presiones estimadas a partir del contenido de Al del ortopiroxeno coexistiendo con granate (Nickel y Green, 1985) fueron también más altas, de 15,6 a 22,2 kb.

En resumen, en conjunto se obtuvieron temperaturas superiores a 1200°C para las muestras del manto de la región norte, en Prahuaniyeu (T hasta 1203°C), pero los valores más altos individualmente se encuentran en dos muestras de la región austral en la localidad de Pali Aike con T máxima de 1309°C.

Las temperaturas calculadas para los xenolitos de la zona central de Patagonia son, en general, menores que la mayoría de los reportados para las demás localidades estudiadas, aunque algunas muestras llegan hasta los 1127°C.

Un caso particular es la localidad Paso de Indios, que está ubicada en el norte de Patagonia, en una región donde se incluyen todas las localidades que están en el Macizo Nordpatagónico. Paso de Indios está en el borde inferior de este macizo, y se observó en este trabajo que los valores de temperatura son más similares a los de la región central que a los de la región norte, con temperaturas bajas a diferencia de las altas temperaturas de las localidades de la provincia de Río Negro.

Como se puede observar en la figura 15 comparando las distintas regiones estudiadas en este trabajo, se obtuvieron geotermas similares. Se puede distinguir que en Patagonia norte y austral, la línea de tendencia es más horizontal en comparación con las demás zonas, lo que indica que la temperatura aumenta más en relación al aumento de presión.

Figura 15. Comparación de líneas de tendencias de los datos de todas las localidades estudiadas con las geotermas de 90mw/m^2 (A), 60mw/m^2 (B) y 40mw/m^2 (C) tomadas de Bjerg (2009). Gráfico a) tendencias lineales; b) tendencias exponenciales.

Comparando las geotermas de este trabajo con las obtenidas por Bjerg et al. (2009), se puede indicar que: en Payenia (Fig. 16a) la línea de tendencia se acerca a la geoterma de 90 mw/m² (A) siendo ésta típica de zonas con litósfera caliente por ejemplo en zonas con volcanismo activo reciente. Se destaca que en esta región existe volcanismo menor a 1Ma.

Las líneas de tendencia de Patagonia norte y austral (Fig. 16 b y e) se encuentran entre las geotermas de 60 y 90 mw/m² (A y B). Se destaca que las muestras de temperaturas más altas corresponden a las que contienen granates de Prahuaniyeu y Pali Aike, que tendrían una geoterma más empinada indicando mayores profundidades de proveniencia de los xenolitos, pero como además hay muestras que se encuentran en el campo de la espinela con menores temperaturas y en un rango de presiones más restringido, la geoterma de las dos zonas en general es más horizontal que las de los otros sectores estudiados.

En Patagonia central y sur (Fig. 16 c y d) las líneas de tendencia obtenidas se encuentran entre las geotermas de 60 y 90 mw/m². La diferencia principal entre las dos regiones es que en el centro de Patagonia las presiones tienen un rango más amplio que en el sur donde están más restringidas en valores mayores, entre los 15 y 25 kb. Una geoterma mayor a 60 mw/m² en esta región estaría asociada a un intenso magmatismo de tras arco ocurrido durante el Plioceno-Pleistoceno.

Figura 16. Comparación de las geotermas en las distintas regiones de la Patagonia argentina. a) Payenia; b) Patagonia norte; c) Patagonia central; d) Patagonia sur; e) Patagonia austral.

En resumen, una geoterma elevada se puede vincular al volcanismo patagónico Plioceno-Pleistoceno en una situación tectónicamente activa de retroarco, como han sugerido, entre otros, Stern et al. (1986). Como las geotermas definidas para Patagonia son similares a las geotermas oceánicas, y este hallazgo no se corresponde con una configuración tectónica de intraplaca continental, se sugiere que las características químicas de los xenolitos del manto patagónico pueden estar relacionadas con una pluma o diapiro de manto ascendente en un ajuste tectónico extensional (Bjerg et al. 2005).

En Patagonia central, la geoterma obtenida se ubica entre las de 60 y 90 mw/m² lo que significa que esta porción de manto registra un mayor aumento de temperatura con la profundidad, esto podría estar relacionado con la generación de magma durante procesos extensionales del Cenozoico.

Las temperaturas y presiones relativamente altas en Prahuaniyeu y Pali Aike sugieren que provienen de sectores entre 40 y 80 km. Las condiciones de presión y temperatura estimadas pueden estar relacionadas con la evolución en el Oligoceno tardío, de la Provincia ígnea Somuncura, es decir, apoyan la existencia de inestabilidades térmicas en el

manto local, que podría haber sido responsable de transportar calor por convección a la litosfera durante la actividad magmática (Kay et al. 2007, Bjerg et al. 2009).

5.2. Estimaciones de fusión

El grado de fusión se ha estimado sobre la base del #Cr de las espinelas utilizando la ecuación de Batanova et al. (1998). Los resultados sugieren que los xenolitos estudiados experimentaron una extracción de fundido de entre 1,08% y 23,33% (Fig. 17). Se estimaron grados menores de fusión parcial (1,08 a 12,55%) para las muestras de Payenia, con respecto a Patagonia norte que tiene los valores mayores y el mayor ámbito de variación de los mismos (2,31 a 23,33%).

Figura 17. Valores de fusión vs temperatura de Payenia y Patagonia.

Como se observa en los gráficos de la figura 18, en general no se distingue una clara relación de las temperaturas con el grado de fusión. Solo se puede observar en Payenia (Fig 18a) un aumento del grado de fusión con el aumento de la temperatura aunque esta correlación es muy débil. Por el contrario, en Patagonia norte (Fig. 18b) se infiere una disminución del grado de fusión con el aumento de la temperatura aunque hay dispersión de los datos.

Figura 18. Comparación de los grados de fusión de las distintas regiones estudiadas. a) Payenia; b) Patagonia norte; c) Patagonia central; d) Patagonia sur; e) Patagonia austral.

En Payenia los valores de fusión obtenidos en general son bajos, hasta 12,6%, aunque la mayoría de los xenolitos corresponden al grupo que tiene hasta 6% sin ningún tipo de tendencia visible de los datos. Y por otro lado, hay un grupo de 7 muestras de las que se puede inferir que tienen una tendencia leve al aumento de grado de fusión con el aumento de temperatura.

En Patagonia norte hay gran dispersión de los datos, dentro de esta zona dos localidades tienen valores mayores, Cerro Medina y Paso de Indios con valores de hasta 23,3% pero no son las localidades con temperaturas más altas por lo que la tendencia vista en Payenia no se cumpliría. Por otro lado, Laguna Fría es una de las dos localidades con temperatura mayor a 1100°C y a la vez tiene 13,9% de empobrecimiento, y la otra localidad es Prahuaniyeu que si bien es una de las dos localidades que tiene las temperaturas mayores en Patagonia, tiene los valores mínimos de fusión de 2,3% en su zona. Por este motivo, se podría definir una tendencia a la disminución del grado de fusión con el aumento de temperatura. Las cinco localidades restantes del norte tienen valores que oscilan entre los 9,6 y 18,8% y no se puede establecer una correlación con la temperatura.

En Patagonia central, si bien no hay ninguna tendencia de los datos, se puede destacar que en Cerro Clark donde las temperaturas son las menores para esta zona (704-885°) los

valores de fusión también son los más bajos de 2,1 a 10,6%. Por último, en Patagonia sur y austral, con los valores obtenidos se observó que no hay relación del grado de fusión con la temperatura.

Como resultado de las observaciones de todas las áreas, se puede destacar que en Paso de Indios el manto sufrió las mayores extracciones de fundidos, por el contrario en Agua Poca el manto es el menos empobrecido.

En comparación con otros autores, en Payenia Bertotto et al. (2013) obtuvieron valores del grado de extracción de fundidos del 1 al 7%, basado en las composiciones de espinelas (Batanova et al. 1998) y determinaron que según los datos químicos y las características petroquímicas, los xenolitos de Agua Poca son consistentes con una derivación de un manto residual con grados variables de fusión parcial (Bertotto et al. 2013).

En Patagonia norte, en Prahuaniyeu según Bjerg et al. (2009) las peridotitas de espinela son los residuos de 5-12% de fusión, mientras que las muestras con granate son los residuos de 1-3% de fusión, valores menores a los calculados en este trabajo. En Co. Medina, Orlandi (2015) obtuvo valores de poco más de 20% de fusión.

Además, Mundl et al. (2015) calcularon para Comallo 19% y para Puesto Díaz y Co. Chenque hasta 25% de extracción de fundido y determinaron que la mayoría de los xenolitos del manto de Patagonia norte en ese estudio experimentaron una extensa extracción de fundido de entre 20 y 30%. En Paso de Indios, Ponce et al. (2015) obtuvieron valores de 11-24% y en Co. Chenque 11-14%, similares a los obtenidos en este trabajo. A partir de esto, se determinó que la parte del manto de donde provienen los xenolitos experimentó un empobrecimiento variable por extracción de fundidos, lo que es notable a partir de los valores de distintas localidades que están geográficamente próximas entre sí y pertenecen al mismo evento volcánico (Ponce et al. 2015).

En Patagonia central, se pueden comparar los resultados con los obtenidos para Co. Tortuga por Brovelli (2016) con grados de fusión en torno al 15% para las lherzolitas y 18 y 25% para dos harzburgitas, diferencia de estimaciones marcada por la litología que en los valores estimados en este trabajo no se pudo notar.

En Patagonia sur, en Estancia Sol de Mayo los valores de Melchiorre et al. (2015) tienen un rango más amplio, entre 5-13% para lherzolitas y 20-30% para harzburgitas, marcando otra diferencia según la litología, que no se puede observar en los valores obtenidos para este trabajo ya que ambos tipos de rocas dieron valores en un rango más restringido, entre
16-20,9%. Hacía el sur, en Tres Lagos, Ntaflos et al. (2007) determinaron valores menores de fusión, de 2% en el campo de peridotita de granate y 2–8% en el campo de peridotita de espinela.

Por último, dentro de la zona austral, en Co. del Fraile Faccini et al. (2013) calcularon valores de 10-25% que son relativamente más altos que los estimados en este trabajo, de 7,8-17,7%.

En resumen, el manto litosférico debajo de Patagonia ha experimentado extracciones menores de fundidos en peridotitas en el campo de estabilidad del granate y mayores en el campo correspondiente a espinelas.

6. CONCLUSIONES

Las temperaturas obtenidas para el manto litosférico del sur de Sudamérica varían entre 679°C y 1309°C y las presiones varían entre 9 a 29 kb. Las temperaturas más elevadas (mayores a 1200°C) fueron obtenidas en xenolitos de las localidades de Prahuaniyeu en Patagonia norte y Pali Aike en Patagonia austral, coincidiendo con la presencia de granate en la asociación mineralógica. Las menores temperaturas se estimaron para muestras de Paso de Indios, Cerro Chenque (Patagonia norte) y Tres Lagos (Patagonia sur).

Los cálculos de extracción de fundidos o empobrecimiento por fusión muestran un amplio rango de variación, entre 1,08 y 23,33% de fusión. Se estimaron gradosde fusión menores (1,08 a 12,55%) para las muestras de Agua Poca en Payenia, en contraste con los xenolitos de Patagonia norte que presentan los mayores valores y el mayor rango de variación (2,31 a 23,33%).

Las temperaturas y presiones permitieron obtener geotermas para cada zona estudiada e inferir que los xenolitos analizados provienen de profundidades del manto de entre 30 y 70 km. Estas geotermas reflejan un volcanismo activo en el retroarco extraandino.

No se registraron en principio grandes efectos del calentamiento del basalto en las muestras seleccionadas.

Los distintos termómetros y barómetros aportaron valores similares y tienen correlación directa con el termómetro de Taylor (1998) y el barómetro de Mercier (1980) seleccionados en este trabajo.

REFERENCIAS BIBLIOGRÁFICAS

- Barbieri, M. A. (1997). Caratteristiche petrologiche e geochimiche del mantello litosférico in Sud America. Dottorato di Ricerca in Mineralogia e Cristallografia. Università di Modena, Italia.
- Batanova, V., Suhr, G. y Sobolev, A. 1998. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands Ophiolite, Newfoundland, Canada; ion probe study of clinopyroxenes. Geochimica Cosmochimica Acta 62: 853–866.
- Bertotto, G. W., Mazzucchelli, M., Zanetti, A. y Vannucci, R. 2013. Petrology and geochemistry of the back-arc lithospheric mantle beneath eastern Payunia (La Pampa, Argentina): Evidence from Agua Poca peridotite xenoliths. Geochemical Journal 47(2): 219-234.
- Bertotto, G.W., Conceição, R.V., Zanetti, A., Schilling, M., Giovanardi, T., Mazzucchelli M., 2015. Manto ligeramente empobrecido por fusión parcial y con metasomatismo en el sureste de Payenia: Inferencia a partir de xenolitos ultramáficos del volcán Huanul. 3º Simposio sobre Petrología Ígnea y Metalogénesis Asociada. UNRN, Actas p.28-29. General Roca.
- Bjerg, E. A., Ntaflos, Th., Kurat, G., Dobosi, G. y Labudía, C. H., 2004. The upper mantle beneath Patagonia, Argentina, documented by xenoliths from alkali basalts. Journal of South American Earth Sciences (en prensa).
- Bjerg, E.A., Ntaflos, Th., Kurat, G., Dobosi, G. y Labudia, C. 2005. The upper mantle beneath Patagonia, Argentina, documented by xenoliths from alkali basalts. Journal of South American Earth Sciences 18: 125-145.
- Bjerg, E. A., Ntaflos, T., Thöni, M., Aliani, P. & Labudia, C. H. (2009). Heterogeneous lithospheric mantle beneath northern Patagonia: evidence from Prahuaniyeu garnetand spinel-peridotites. Journal of Petrology 50, 1267–1298.
- Bodinier J.L. y Godard M., 2014. Orogenic, Ophiolitic, and Abyssal Peridotites. Treatise on Geochemistry, 3: 103-167.
- Brey, G. y Köhler, T. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31: 1353-1378.
- Brovelli, F. (2016). Caratterizzazione Petrografica e Geochimica degli xenoliti di mantello di Cerro Tortuga (Patagonia, Provincia di Chubut, Argentina). Tesi di laurea magistrale. Dipartimento di Scienze Chimiche e Geologiche. Universita degli studi di Modena e Reggio Emilia. Italia.

- Cande, S.C., Leslie, R.B., 1986. Late Cenozoic tectonics of the southern Chile Trench. Journal of Geophysical Research 91: 495–520.
- Dantas, C., Grégoire, M., Koester, E., Conceição, R. V., & Rieck Jr, N. (2009). The lherzolite–websterite xenolith suite from Northern Patagonia (Argentina): evidence of mantle–melt reaction processes. Lithos 107(1-2): 107-120.
- Douglas, B.J., Saul, S.L., Stern, C.R., 1987. Rheology of the upper mantle beneath southernmost South America inferred from peridotite xenoliths. Journal of Petrology 95: 241–253.
- Faccini, B., Bonadiman, C., Coltorti, M., Grégoire, M., & Siena, F. (2013). Oceanic material recycled within the sub-Patagonian lithospheric mantle (Cerro del Fraile, Argentina). Journal of Petrology 54(6): 1211-1258.
- Forsythe, R.D., Nelson, E.P., Carr, M.J., Kaeding, M.E., Hervé, M., Mpodozis, C., Soffia, J.M., Harambour, S., 1986. Pliocene near-trench magmatism in southern Chile: a possible manifestation of ridge collision. Geology 14: 23–27.
- Gorring, M.L., Kay, S.M., Zeitler, P.K., Ramos, V.A., Rubiolo, D. y Fernandez, M .I., 1997. Neogene Patagonian plateau lavas: Continental magmas associated with ridge collision at the Chile triple junction. Tectonics 16: 1-17.
- Helffrich, G. R. y Wood, B. J., 2001. The Earth's mantle. Nature 412(6846): 501-507.
- Hellebrand, E., Snow, J., Dick, H. y Hofmann, A. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature. 410: 677-681.
- Kay, S.M., Gorring, M., y Ramos, V.A., 2004, Magmatic sources, setting and causes of Eocene to Recent Patagonian plateau magmatism (36°S to 52°S latitude): Asociación Geológica Argentina Revista, 59: 556–568.
- Kay, S. M., Ardolino, A. A., Gorring, M. L. & Ramos, V. A. (2007). The Somuncura Large Igneous Province in Patagonia: interaction of a transient mantle thermal anomaly with a subducting slab. Journal of Petrology 48, 43–77.
- Kilian, R., Weigand, O., Altherr, R., 1997. Tertiary to Quaternary Chemical Trends of Basalts from the Cordillera Baguales (508S): Constraints on the Geotectonic Evolution of the Southernmost Andes. Final Symposium IGCP 345 Evolucio`n Litosfe´rica de los Andes. Actas VIII Congreso Geológico Chileno 3, pp. 1666–1670.
- Köhler, T., Brey, G.P., 1990. Ca-exchange between olivine and clinopyroxene as a geothermobarometer calibrated from 2 to 60 kbar in primitive natural lherzolites. Geochimica et Cosmochimica Acta 54, 2375–2388.

Kohler, 1994, PTEXL program, University of Alberta.

- Melchiorre, M., Coltorti, M., Gregoire, M., & Benoit, M. (2015). Refertilization process in the Patagonian subcontinental lithospheric mantle of Estancia Sol de Mayo (Argentina). Tectonophysics, 650, 124-143.
- Mercier, J.-C.C. 1980. Single-pyroxene thermobarometry. Tectonophysics 70: 1-37.
- Mundl, A., Ntaflos, T., Ackerman, L., Bizimis, M., Bjerg, A., 2015. Geochemical and Os– Hf–Nd–Sr Isotopic Characterization of North Patagonian Mantle Xenoliths: Implications for Extensive Melt Extraction and Percolation Processes. Journal of Petrology 57: 685-715.
- Nickel, K.G., Green, D.H., 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 73, 158–170.
- Nimis, P. y Grütter, H. 2010. Internally consistent geothermometers for garnet peridotites and pyroxenites. Contributions to Mineralogy and Petrology 159: 411-427.
- Nimis, P. y Taylor, W. R. 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology, 139: 541–544.
- Ntaflos, T., Bjerg, E. A., Labudia, C. H., &Kurat, G. (2007). Depleted lithosphere from the mantle wedge beneath Tres Lagos, southern Patagonia, Argentina. Lithos, 94(1-4), 46-65.
- Ntaflos, Th. y Bjerg, E.A. 2006. Garnet-bearing xenoliths from Prahuaniyeu N-Patagonia: a LA-ICP-MS study. 16° Annual VM Goldschmidt Conference August-September 2006, Geochimica et Cosmochimica Acta, 70 (18), Supplement 1, Page A450.
- Orlandi A. (2015). Gli xenoliti di mantello del Cerro Medina (provincia Río Negro, Argentina). Tesi di laurea triennale. Dipartimento di Scienze Chimiche e Geologiche. Universita degli studi di Modena e Reggio Emilia. Italia.
- Palme, H. y O'Neill H.St.C., 2014. Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry, vol. 3. p., 1-39.
- Ponce, A. D., Bertotto, G. W., Zanetti, A., Brunelli, D., Giovanardi, T., Aragón, E., Bernardi, M.I, Hémond, C. & Mazzucchelli, M. (2015). Short-scale variability of the SCLM beneath the extra-Andean back-arc (Paso de Indios, Argentina): Evidence from spinel-facies mantle xenoliths. Open Geosciences, 1.
- Putirka K., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy & Geochemistry 69, 61-120.

- Ramos, V.A. y Kay, S.M. 1992. Southern Patagonian plateau basalts and deformation: backarc testimony of ridge collisions.Tectonophysics 205: 261-282.
- Ramos, V., 1999. Las provincias geológicas del territorio argentino. In: Caminos R, ed. Geología Argentina. Buenos Aires: Instituto de Geología y Recursos Minerales, Anales 29 (15), 41–96.
- Ramos, V.A., Aleman, A., 2000. Tectonic Evolution of the Andes. In: Cordani, U.G., Milani, E.J., Thomas Filho, A., Campos, D.A. (Eds.), Tectonic Evolution of South America. International Geological Congress, Rio de Janeiro, pp. 635–685.
- Rivalenti, G., Mazzuchelli, M., Laurora, A., Ciuffi, C.A., Zanetti, A., Vannucci, R.,Cingolani, C.A. (2004a). The back arc mantle lithosphere in Patagonia, South America. Journal of South American Earth Sciences 17, p. 121-152.
- Rivalenti, G., Zanetti, A., Mazzucchelli, M., Vannucci, R., Cingolani, C.A., 2004b. Equivocal carbonatite markers in the mantle xenoliths of the Patagonia backarc: the Gobernador Gregores case (Santa Cruz Province, Argentina). Contributions to Mineralogy and Petrology 147, 647–670.
- Rollinson, H., 2007. Early earth system: A geochemical approach. Blackwell Publish Ltd, pp. 296.
- Stachel, T., (2019). PTEXL. University of Alberta. https://cms.eas.ualberta.ca/team-diamond/
- Stern, C.R., Futa, K., Saul, S., Skewes, M.A., 1986. Nature and evolution of the subcontinental mantle lithosphere below southern South America and implications for Andean magma series. Revista Geológica de Chile 27, 41–53.
- Stern, C. R., Frey, F. A., Futa, K., Zartman, R. E., Peng, Z. y Kyser, K. T., 1990. Traceelementand Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America. Contributions to Mineralogy and Petrology, 104: 294-308.
- Stern, C.R., Kilian, R., Olker, B., Hauri, E.H., Kyser, T.K., 1999. Evidence from mantle xenoliths for relatively thin-100 km continental lithosphere below the Phanerozoic crust of southernmost South America.Lithos 48, 217–235.
- Taylor, W.R. 1998. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jb. Miner. Abh. 172: 381-408.
- Vásquez, M., Schilling, M., & Morata, D. (2012). Petrografía y geoquímica de los xenolitos mantélicos del volcán Auvernia (Plioceno-Pleistoceno), Provincia de Santa

Cruz, Patagonia Argentina. Memoria para optar al título de geólogo. Santiago, Chile. Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas.

- Wang, J., Hattori, K. H., Kilian, R., & Stern, C. R. (2007). Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fO 2 by slabmelt. Contributions to Mineralogy and Petrology, 153(5), 607-624.
- Wells, P. R. A., 1977. Pyroxene thermometry in simple and complex systems. Contr. Miner. Petrol. 62, 129-39.
- Wilson, M. 1989. Igneous Petrogenesis. Unwin Hyman, 466p, Londres.

APÉNDICE

Tabla 1. Datos de xenolitos estudiados. T [BKN]: Termómetro de dos piroxenos de Brey y Köhler (1990), T [TA98]: Termómetro de dos piroxenos de Taylor (1998), T [Ca-in-opxNG10]: Termómetro de Ca-en-opx de Nimis y Grütter (2010), T [NTcpx]: Termómetro de clinopiroxeno de Nimis y Taylor (2000), p[BKN] granate: Barómetro gt-opx de Brey y Köhler (1990), P (Mercier 1980 cpx): Barómetro de Mercier (1980) para cpx, P (Mercier 1980 opx): Barómetro de Mercier (1980) para opx. P: Payenia, N: Patagonia norte, C: Patagonia central, S: Patagonia sur, A: Patagonia austral.

Referencias: 1: Bertotto et al. (2013), 2: Bertotto et al. (2015), 3: Bjerg et al. (2005), 4: Bjerg et al. (2009), 5: Mundl et al. (2015), 6: Rivalenti et al. (2004a), 7: Ponce et al. (2015), 8: Orlandi (2015), 9: Dantas et al. (2009), 10: Rivalenti et al. (2007), 11: Brovelli (2016), 12: Ntaflos et al. (2007), 13: Aliani et al. (2009), 14: Melchiorre et al. (2015), 15: Rivalenti et al. (2004b), 16: Vásquez (2012), 17: Faccini et al. (2013), 18:Wang et al. (2007), 19: Douglas et al. (1987), 20: Barbieri (1997).

Orden	1	2	3	4	5	6	7	8
Muestra	AP2-1	AP2-1	AP2-1	AP15A	AP15B	AP15B	AP15B	AP15D
Localidad	Agua Poca	Agua Poca	Agua Poca	Agua Poca				
Litología	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Harzburgita	Harzburgita	Harzburgita	Lherzolita
Referencia	1	1	1	1	1	1	1	1
Zona	Р	Р	Р	Р	Р	Р	Р	Р
Termómetros T [C]								
T [BKN]	1042	1056	1068	1014	938	969	923	1010
T [TA98]	989	1003	1007	944	909	931	878	948
T [Ca-in-opxNG10]	1004	1008	1046	934	980	944	975	932
T [NTcpx]	971	986	999	935	892	920	871	935
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	18	18	16	19	20	18	17
P (Mercier 1980 opx)	17	17	19	16	15	15	18	15
Grado de fusión								
F (Hellebrand et al. 2001)	0,4	0,3			10,2	10,1		2,1
F (Batanova et al. 1998)	2,9	2,8		2,3	12,4	12,3		4,6

Orden	9	10	11	12	13	14	15	16
Muestra	AP15E	AP15G	AP15G	AP34A	AP34A	AP34C	AP34C	AP34C
Localidad	Agua Poca							
Litología	Lherzolita							
Referencia	1	1	1	1	1	1	1	1
Zona	Р	Р	Р	Р	Р	Р	Р	Р
Termómetros T [C]								
T [BKN]	1086	1072	1088	940	941	970	1046	1034
T [TA98]	1045	1026	1045	860	875	909	969	950
T [Ca-in-opxNG10]	918	952	959	920	970	1026	917	942
T [NTcpx]	1054	1033	1053	848	856	880	958	945
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	20	20	20	16	17	16	19	17
P (Mercier 1980 opx)	15	17	16	16	16	17	15	17
Grado de fusión								
F (Hellebrand et al. 2001)	9,9	10,4	9,9	3,1	3,3	0,9	0,6	
F (Batanova et al. 1998)	12,1	12,6	12,1	5,5	5,7	3,4	3,1	

Orden	17	18	19	20	21	22	23	24
Muestra	AP78-3	AP78-3	AP79	AP79	AP80	AP80	AP87	AP87
Localidad	Agua Poca							
Litología	Lherzolita							
Referencia	1	1	1	1	1	1	1	1
Zona	Р	Р	Р	Р	Р	Р	Р	Р
Termómetros T [C]								
T [BKN]	1010	934	983	993	951	1075	893	956
T [TA98]	997	910	917	931	888	1026	831	888
T [Ca-in-opxNG10]	1034	929	925	959	1016	992	951	931
T [NTcpx]	981	901	904	920	867	1020	807	871
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	15	16	16	14	18	13	15
P (Mercier 1980 opx)	18	17	16	17	18	18	16	16
Grado de fusión								
F (Hellebrand et al. 2001)	2,3		0,9		1,1	1,1	0,2	
F (Batanova et al. 1998)	4,7		3,3		3,5	3,6	2,7	2,1

Orden	25	26	27	28	29	30	31	32
Muestra	AP87	AP88	AP88	AP89	AP89	AP89	AP91B	AP91B
Localidad	Agua Poca							
Litología	Lherzolita							
Referencia	1	1	1	1	1	1	1	1
Zona	Р	Р	Р	Р	Р	Р	Р	Р
Termómetros T [C]								
T [BKN]	947	1049	1046	951	1042	1066	1023	910
T [TA98]	875	1023	1019	884	980	993	983	889
T [Ca-in-opxNG10]	964	955	972	913	939	822	976	864
T [NTcpx]	864	1019	1014	863	967	987	977	873
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	14	19	19	14	17	18	17	13
P (Mercier 1980 opx)	19	16	17	15	15	13	18	14
Grado de fusión								
F (Hellebrand et al. 2001)		0,4	1,0					
F (Batanova et al. 1998)		2,9	3,5	1,1	1,9		2,0	

Orden	33	34	35	36	37	38	39	40
Muestra	AP91C	AP91C	AP91D	AP92	HU11	HU11	HU11	HU14
Localidad	Agua Poca	Agua Poca	Agua Poca	Agua Poca	Cerro Huanul	Cerro Huanul	Cerro Huanul	Cerro Huanul
Litología	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita
Referencia	1	1	1	1	2	2	2	2
Zona	Р	Р	Р	Р	Р	Р	Р	Р
Termómetros T [C]								
T [BKN]	1027	1018	859	830	927	991	1014	1194
T [TA98]	969	955	827	755	864	918	933	1158
T [Ca-in-opxNG10]	938	936	949	777	861	827	917	1142
T [NTcpx]	964	953	800	738	852	920	929	1144
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	16	11	10	12	16	15	22
P (Mercier 1980 opx)	17	17	16	14	16	16	16	17
Grado de fusión								
F (Hellebrand et al. 2001)	2,2	2,0	1,0		3,2	3,2	3,4	7,4
F (Batanova et al. 1998)	4,6	4,5	3,5	1,9	5,6	5,6	5,8	9,6

Orden	41	42	43	44	45	46	47	48
Muestra	HU14	HU15	HU19	HU20B	HU20B	HU21A	HU21A	HU22
Localidad	Cerro Huanul							
Litología	Lherzolita							
Referencia	2	2	2	2	2	2	2	2
Zona	Р	Р	Р	Р	Р	Р	Р	Р
Termómetros T [C]								
T [BKN]	1204	1034	970	949	940	954	974	972
T [TA98]	1182	1022	928	914	883	913	922	916
T [Ca-in-opxNG10]	1128	906	916	854	853	949	864	901
T [NTcpx]	1176	1024	916	898	871	899	915	908
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	22	20	16	17	15	13	14	14
P (Mercier 1980 opx)	17	16	16	14	15	16	14	16
Grado de fusión								
F (Hellebrand et al. 2001)	7,4	2,0	0,6	0,6	0,5	1,4		
F (Batanova et al. 1998)	9,7	4,4	3,1	3,1	3,0	3,9		2,4

Orden	49	50	51	52	53	54	55	56
Muestra	HU22	HU22	HU23	HU25	HU25	HU32	HU32	HU33
Localidad	Cerro Huanul							
Litología	Lherzolita							
Referencia	2	2	2	2	2	2	2	2
Zona	Р	Р	Р	Р	Р	Р	Р	Р
Termómetros T [C]								
T [BKN]	950	954	1208	1160	970	904	921	890
T [TA98]	886	887	1187	1135	952	836	850	808
T [Ca-in-opxNG10]	908	928	1174	916	931	850	821	771
T [NTcpx]	875	875	1178	1159	945	811	824	794
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	15	14	22	22	18	11	13	10
P (Mercier 1980 opx)	16	16	17	16	15	13	12	14
Grado de fusión								
F (Hellebrand et al. 2001)			8,0					
F (Batanova et al. 1998)			10,3					

Orden	57	58	59	60	61	62	63	64
Muestra	HU33	HU34	HU34	Co-26	LF-9	Tr-10	Pr-09	Pr-99
Localidad	Cerro Huanul	Cerro Huanul	Cerro Huanul	Comallo	Laguna Fria	Traful	Prahuaniyeu	Prahuaniyeu
Litología	Lherzolita	Lherzolita	Lherzolita	sp-harzburgit	esp-harzburgites	sp-harzburgi	tesp-harzburgite	Grt-lherzolite
Referencia	2	2	2	3	3	3	3	3
Zona	Р	Р	Р	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	824	1015	1038	925	1154	987	874	1204
T [TA98]	766	943	987	888	1132	967	866	1175
T [Ca-in-opxNG10]	816	854	980	946	1167	823	862	1153
T [NTcpx]	738	936	973	889	1148	985	861	1152
Barómetros P [kb]								
p [BKN] granate								21
P (Mercier 1980 cpx)	6	17	18	18	23	22	19	21
P (Mercier 1980 opx)	13	15	16	17	23	16	15	16
Grado de fusión								
F (Hellebrand et al. 2001)				15,3	11,7	16,5	13,1	8,3
F (Batanova et al. 1998)				17,3	13,9	18,5	15,2	10,5

Orden	65	66	67	68	69	70	71	72
Muestra	Co-13	Pra1	Pra21	Pra33	Pra38	Pra46	Pra68	Pra70
Localidad	Comallo	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu
Litología	Websterite	pinel-peridotite	pinel-peridotite	el-garnet perid	el-garnet perid	pinel-peridotit	pinel-peridotit	el-garnet perid
Referencia	3	4	4	4	4	4	4	4
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	916	1066	959	1197	1099	838	1142	1213
T [TA98]	931	1013	923	1155	1081	804	1110	1197
T [Ca-in-opxNG10]	1015	1041	966	1123	1104	952	1101	1181
T [NTcpx]	901	1004	905	1139	1054	776	1098	1183
Barómetros P [kb]								
p [BKN] granate				14	13			16
P (Mercier 1980 cpx)	15	19	19	22	19	18	22	22
P (Mercier 1980 opx)	19	14	16	16	17	16	16	15
Grado de fusión								
F (Hellebrand et al. 2001)		13,0	8,9	7,9	3,3	7,1		11,3
F (Batanova et al. 1998)		15,1	11,1	10,1	5,7	9,4		13,5

Orden	73	74	75	76	77	78	79	80
Muestra	Pra74	Pra79	Pra82	Pra91	Pra94	Pra96	Pra98	Pra197
Localidad	Prahuaniyeu							
Litología	el-garnet peric	pinel-peridotit	pinel-peridotit	pinel-peridotit	pinel-peridotit	pinel-peridotit	pinel-peridotit	el-garnet perid
Referencia	4	4	4	4	4	4	4	4
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	1229	1013	1035	1152	1144	1136	1057	1207
T [TA98]	1189	970	1009	1099	1113	1102	1016	1191
T [Ca-in-opxNG10]	1130	995	1017	1076	1125	1126	1045	1192
T [NTcpx]	1172	945	1004	1074	1115	1100	1002	1178
Barómetros P [kb]								
p [BKN] granate	14							23
P (Mercier 1980 cpx)	23	18	20	21	22	22	18	22
P (Mercier 1980 opx)	17	16	15	17	15	15	16	16
Grado de fusión								
F (Hellebrand et al. 2001)	7,2	3,0	13,3		15,2	15,6	8,4	2,1
F (Batanova et al. 1998)	9,5	5,4	15,4	2,3	17,2	17,6	10,7	4,6

Orden	81	82	83	84	85	86	87	88
Muestra	Pra198	Pra199	Pra232	Pra233	Pra234	Pra297	Pra299	Pra301
Localidad	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu
Litología	el-garnet perid	Barnet peridotit	pinel peridotit	pinel peridotit	el-garnet perio	el-garnet perid	el-garnet perid	pinel peridotit
Referencia	4	4	4	4	4	4	4	4
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	1156	1236	1142	1098	1205	1150	1215	1007
T [TA98]	1129	1179	1117	1028	1203	1110	1191	999
T [Ca-in-opxNG10]	1152	1144	1100	1034	1198	1130	1193	1033
T [NTcpx]	1103	1159	1101	1005	1192	1117	1179	997
Barómetros P [kb]								
p [BKN] granate	22	21			23	30	23	
P (Mercier 1980 cpx)	21	24	21	20	22	21	23	19
P (Mercier 1980 opx)	17	17	16	17	15	23	17	16
Grado de fusión								
F (Hellebrand et al. 2001)	6,8		6,9	0,6	10,4	5,6	0,0	13,0
F (Batanova et al. 1998)	9,1		9,2	3,0	12,6	7,9	2,5	15,2

Orden	89	90	91	92	93	94	95	96
Muestra	Pra302	Pra303	Pra305	Pra306	Pra307	Pra399	Pra420	Pra421
Localidad	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu
Litología	arnet peridoti	pinel peridotit	pinel peridotit	pinel peridotit	pinel peridotit	el-garnet perid	lel-garnet perid	el-garnet perid
Referencia	4	4	4	4	4	4	4	4
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	1144	1159	969	1008	1192	1195	1207	1159
T [TA98]	1144	1126	912	956	1161	1132	1158	1152
T [Ca-in-opxNG10]	1140	1161	949	1005	1160	1131	1133	1136
T [NTcpx]	1126	1132	906	941	1176	1101	1135	1133
Barómetros P [kb]								
p [BKN] granate	21					21	21	22
P (Mercier 1980 cpx)	22	23	18	18	24	24	23	21
P (Mercier 1980 opx)	18	14	15	16	14	17	17	17
Grado de fusión								
F (Hellebrand et al. 2001)		16,8	13,5	9,2	16,8	4,4	3,3	7,1
F (Batanova et al. 1998)		18,8	15,6	11,4	18,8	6,7	5,7	9,3

Orden	97	98	99	100	101	102	103	104
Muestra	COM101	COM103	COM108	COM110	COM118	COM139	COM140	COM141
Localidad	Comallo							
Litología	harzburgite							
Referencia	5	5	5	5	5	5	5	5
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	890	904	856	894	917	871	903	887
T [TA98]	867	871	822	867	870	848	863	854
T [Ca-in-opxNG10]	947	940	943	954	947	945	941	926
T [NTcpx]	864	870	812	863	867	841	855	853
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	18	19	18	18	16	18	17	17
P (Mercier 1980 opx)	16	18	18	17	17	17	17	17
Grado de fusión								
F (Hellebrand et al. 2001)	14,8	16,2	16,1	13,8	14,4	13,8	12,2	
F (Batanova et al. 1998)	16,9	18,3	18,1	15,9	16,5	15,9	14,3	

Orden	105	106	107	108	109	110	111	112
Muestra	COM142	PRA1	PRA74	PRA94	PRA301	PRA303	PRA306	Pi 23
Localidad	Comallo	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Prahuaniyeu	Paso de Indios
Litología	harzburgite	harzburgite	lherzolite	harzburgite	harzburgite	harzburgite	harzburgite	Ha-1a
Referencia	5	5	5	5	5	5	5	6
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	928	1066	1217	1144	1007	1159	1008	1115
T [TA98]	869	1013	1170	1113	999	1126	956	1067
T [Ca-in-opxNG10]	940	1041	1103	1125	1033	1161	1005	800
T [NTcpx]	869	1004	1160	1115	997	1132	941	1104
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	19	23	22	19	23	18	34
P (Mercier 1980 opx)	17	14	17	15	16	14	16	16
Grado de fusión								
F (Hellebrand et al. 2001)		13,0	7,2	15,2	13,0	16,8	9,2	15,2
F (Batanova et al. 1998)		15,1	9,5	17,2	15,2	18,8	11,4	17,3

Orden	113	114	115	116	117	118	119	120
Muestra	Pi 29	PI52	Ja 14	Ja 21	Ja 37	Q58	Q77	Q80
Localidad	Paso de Indios	Paso de Indios	stancia Alvare	stancia Alvaro	e'erro del Moj	óPaso de Indiosl	Paso de Indio	sPaso de Indios
Litología	Ha-1a	Ha-1a	Ha-2	Lh-2	Du-1a	Harzburgita	Wehrlita	Harzburgita
Referencia	6	6	6	6	6	7	7	7
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	939	851	943	837	910	832	833	903
T [TA98]	921	836	933	831	884	824	848	867
T [Ca-in-opxNG10]	905	849	824	846	909	843	780	830
T [NTcpx]	930	833	944	828	875	826	841	865
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	16	16	24	21	15	19	18	18
P (Mercier 1980 opx)	16	16	17		14	19	15	16
Grado de fusión								
F (Hellebrand et al. 2001)	15,9	11,5	15,2	16,2	7,3	14,5		11,3
F (Batanova et al. 1998)	18,0	13,7	17,3	18,3	9,6	16,6		13,5

Orden	121	122	123	124	125	126	127	128
Muestra	Q90	Q103	Q108	Q109	Q150	Q152	Q153	Q154
Localidad	Paso de Indios	Paso de Indios	sPaso de Indios	Paso de Indios	sPaso de Indiosl	Paso de Indio	sPaso de Indiosl	Paso de Indios
Litología	Lherzolita	Lherzolita	Harzburgita	Harzburgita	Websterita ol	Lherzolita	Websterita ol	Lherzolita
Referencia	7	7	7	7	7	7	7	7
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	990	925	892	931	667	731	652	727
T [TA98]	962	883	882	915	700	721	679	718
T [Ca-in-opxNG10]	917	907	812	840	953	910	914	849
T [NTcpx]	953	874	889	916	654	694	644	702
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	20	18	22	20	2	10	13	13
P (Mercier 1980 opx)	15	16	16	16	20	15	18	17
Grado de fusión								
F (Hellebrand et al. 2001)	6,0	10,7	15,9	10,2		12,3		11,6
F (Batanova et al. 1998)	8,4	12,9	17,9	12,4		14,4		13,8

Orden	129	130	131	132	133	134	135	136
Muestra	Q155	M57	M82	L69	L90	L91	L92	MN21-C1
Localidad	Paso de Indios	sPaso de Indios	Paso de Indios	sPaso de IndiosI	Paso de Indio	sPaso de Indios	Paso de Indios	s Cerro Medina
Litología	Lherzolita	Harzburgita	Lherzolita	Harzburgita	Wehrlita	Lherzolita	Lherzolita	Dunita
Referencia	7	7	7	7	7	7	7	8
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	890	858	753	941	777	879	538	1249
T [TA98]	843	811	757	921	770	881	562	1187
T [Ca-in-opxNG10]	948	844	695	810	1011	783	1075	999
T [NTcpx]	814	804	730	919	747	869	524	1223
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	16		13	21	11	19	7	
P (Mercier 1980 opx)	18	17	15	15		15	35	15
Grado de fusión								
F (Hellebrand et al. 2001)	12,6	21,5	15,7	17,3	19,7	17,4	18,7	12,4
F (Batanova et al. 1998)	14,8	23,3	17,7	19,3	21,6	19,3	20,7	14,5

Orden	137	138	139	140	141	142	143	144
Muestra	MN21-C1	MN15-C1	MN15-C1	MN1B-C1	MN1B-C2	MN13-C1	MN13-C3	MN14-C1
Localidad	Cerro Medina	Cerro Medina	Cerro Medina	Cerro Medina	a Cerro Medina	Cerro Medina	Cerro Medina	Cerro Medina
Litología	Dunita	Harzburgita	Harzburgita	Dunita	Dunita	Harzburgita	Harzburgita	Dunita
Referencia	8	8	8	8	8	8	8	8
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	1003	920	928	850	856	869	852	869
T [TA98]	987	912	915	849	861	847	834	868
T [Ca-in-opxNG10]	1002	954	939	854	908	850	826	819
T [NTcpx]	984	903	908	850	858	843	830	865
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	19	18	19	21	21	19	17	20
P (Mercier 1980 opx)	15	16	16	19	15	16	15	15
Grado de fusión								
F (Hellebrand et al. 2001)	21,1	15,0	10,2	13,8	13,6	11,7		11,7
F (Batanova et al. 1998)	22,9	17,0	12,4	15,9	15,7	13,8		13,8

Orden	145	146	147	148	149	150	151	152
Muestra	MN14-C2	MN17-C1	MN17-C1	MN16-C1	MN16-C2	MN18-C1	MN18-C1	CH1
Localidad	Cerro Medina	Cerro Medina	Cerro Medina	Cerro Medina	a Cerro Medina	Cerro Medina	a Cerro Medina	aCerro Chenque
Litología	Dunita	Harzburgita	Harzburgita	Dunita	Dunita	Dunita	Dunita	Harzburgita
Referencia	8	8	8	8	8	8	8	5
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	817	847	828	860	803	808	850	936
T [TA98]	822	848	832	832	773	805	841	911
T [Ca-in-opxNG10]	962	994	835	839	841	839	826	868
T [NTcpx]	810	842	827	829	765	800	842	917
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	19	20	20	18	12	19	19	19
P (Mercier 1980 opx)	18	20	15	16	16	17	17	16
Grado de fusión								
F (Hellebrand et al. 2001)	11,5	12,8	12,9	20,6	12,8	13,4	13,2	14,2
F (Batanova et al. 1998)	13,6	14,9	15,0	22,5	14,9	15,5	15,3	16,2

Orden	153	154	155	156	157	158	159	160
Muestra	CH12	CH17	CH25	CH26	CH42	CH43	CH48	CH63
Localidad	Cerro Chenque	erro Chenqu	acCerro Chenque					
Litología	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Dunita	Harzburgita
Referencia	5	5	5	5	5	5	5	5
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	775	880	779	778	919	882	836	746
T [TA98]	772	878	757	774	906	872	786	735
T [Ca-in-opxNG10]	922	824	852	782	921	918	936	801
T [NTcpx]	761	881	743	769	915	872	778	733
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	19	10	16	20	19	15	15
P (Mercier 1980 opx)	16	15	14	14	16	16	19	19
Grado de fusión								
F (Hellebrand et al. 2001)	14,9	14,0	12,3	16,2	16,6	16,0	11,7	16,0
F (Batanova et al. 1998)	17,0	16,1	14,4	18,2	18,6	18,0	13,8	18,0

Orden	161	162	163	164	165	166	167	168
Muestra	PD1	PD2	PD7	PD27	PD28	PD32	PD48	PD51
Localidad	Puesto Díaz							
Litología	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Dunita	Harzburgita
Referencia	5	5	5	5	5	5	5	5
Zona	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Termómetros T [C]								
T [BKN]	822	702	745	811	926	836	917	798
T [TA98]	805	703	742	806	885	834	862	781
T [Ca-in-opxNG10]	767	788	902	761	925	943	835	814
T [NTcpx]	802	687	733	804	883	830	863	765
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	14	12	13	16	19	17	17	13
P (Mercier 1980 opx)	15	12	16	14	18	16	17	13
Grado de fusión								
F (Hellebrand et al. 2001)	12,8	14,7	14,9	15,3	14,1	15,0	11,1	9,2
F (Batanova et al. 1998)	14,9	16,7	17,0	17,4	16,2	17,1	13,3	11,5

Orden	169	170	171	172	173	174	175	176
Muestra	PD61	PD64	PM12-41	PM12-41	PM12-48	PM-12-05	PM12-05a	PM12-05b
Localidad	Puesto Díaz	Puesto Díaz	o de los Chene	to de los Chene	ro de los Chen	co de los Chene	ro de los Chen	to de los Chena
Litología	Harzburgita	Harzburgita	Websterita	Websterita	Lherzolita	Websterita	Websterita	Websterita
Referencia	5	5	9	9	9	9	9	9
Zona	Ν	Ν	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	904	836	972	983	812	968	978	965
T [TA98]	877	833	909	919	796	906	918	905
T [Ca-in-opxNG10]	940	819	946	958	827	955	953	964
T [NTcpx]	876	835	891	902	780	890	903	887
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	19	20	16	16	7	16	16	16
P (Mercier 1980 opx)	16	16	16	16	14	16	16	16
Grado de fusión								
F (Hellebrand et al. 2001)	16,3	15,3				0,4		
F (Batanova et al. 1998)	18,3	17,3				2,8		

Orden	177	178	179	180	181	182	183	184
Muestra	PM12-12	PM12-12	PM-12-17	PM12-17a	PM12-17b	PM12-17b	PM12-13	PM12-02
Localidad	o de los Chen	ro de los Chen	co de los Chen	to de los Chen	co de los Chen	to de los Chene	to de los Chen	co de los Chena
Litología	Lherzolita	Lherzolita	Websterita	Websterita	Websterita	Websterita	Lherzolita	Websterita
Referencia	9	9	9	9	9	9	9	9
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	917	914	1014	1028	999	1021	900	949
T [TA98]	864	862	933	943	922	935	844	884
T [Ca-in-opxNG10]	917	919	958	955	1000	965	857	919
T [NTcpx]	852	851	916	926	901	919	831	870
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	15	15	18	19	17	18	15	17
P (Mercier 1980 opx)	16	16	16	16	17	17	14	16
Grado de fusión								
F (Hellebrand et al. 2001)		4,6						
F (Batanova et al. 1998)		6,9	2,3					

Orden	185	186	187	188	189	190	191	192
Muestra	PM12-15-C3	PM12-19	PM12-27	PM12-26	PM24-09	PM24-22	PM24-23	PM24-24
Localidad	to de los Chenc	o de los Chene	o de los Chena	o de los Chene	Cerro Clark	Cerro Clark	Cerro Clark	Cerro Clark
Litología	Lherzolita	Websterita	Websterita		Lherzolita	Lherzolita	Lherzolita	Lherzolita
Referencia	9	9	9	9	9	9	9	9
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	929	1005	927	788	830	745	784	939
T [TA98]	868	942	862	797	771	726	747	885
T [Ca-in-opxNG10]	866	957	914	800	809	986	955	1024
T [NTcpx]	860	928	847	792	750	693	717	866
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	16	18	15	14	6		7	15
P (Mercier 1980 opx)	16	16	16	14	13	16	16	18
Grado de fusión								
F (Hellebrand et al. 2001)	6,2	1,0	0,4		3,6	2,9	3,5	5,3
F (Batanova et al. 1998)	8,5	3,5	2,9		6,0	5,3	5,9	7,6

Orden	193	194	195	196	197	198	199	200
Muestra	PM24-25	PM24-29	PM24-27	PM24-32	PM24-20	PM24-21	PM24-30	CD22
Localidad	Cerro Clark	to de los Chene						
Litología	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Websterita	Lh-1a
Referencia	9	9	9	9	9	9	9	6
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	880	845	876	867	734	772	856	1096
T [TA98]	824	801	806	835	704	747	818	1034
T [Ca-in-opxNG10]	900	859	865	923	905	804	938	944
T [NTcpx]	811	785	794	823	679	726	788	1033
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	12	10	14	13			9	22
P (Mercier 1980 opx)	16	14	16	16	15	13	14	17
Grado de fusión								
F (Hellebrand et al. 2001)	3,7	6,5	8,4	8,0	3,3	2,2		0,9
F (Batanova et al. 1998)	6,0	8,8	10,6	10,3	5,7	4,6	2,1	3,4

Orden	201	202	203	204	205	206	207	208
Muestra	CD32	CD34	CD61	CD15	CD28	CD15	CD20	CD18
Localidad	o de los Chen	o de los Chen	co de los Chene	co de los Chen	co de los Cher	nco de los Chene	ro de los Chena	o de los Chene
Litología	Lh-1a	Lh-1a	Lh-1a	Ha-1a	Dunita	Harzburgita	Harzburgita	Lherzolita
Referencia	6	6	6	6	10	10	10	10
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	1060	895	956	982	1061	986	1024	883
T [TA98]	989	836	892	918	994	919	956	816
T [Ca-in-opxNG10]	858	832	817	943	943	943	935	830
T [NTcpx]	989	824	884	921	990	923	949	803
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	20	14	17	12	20	12	19	15
P (Mercier 1980 opx)	16	16	15	13	15	13	15	15
Grado de fusión								
F (Hellebrand et al. 2001)	1,2	0,7	1,9	16,8	9,1	16,8	8,3	5,1
F (Batanova et al. 1998)	3,6	3,2	4,3	18,8	11,3	18,8	10,6	7,4

Orden	209	210	211	212	213	214	215	216
Muestra	CD21	CD22	CD25	CD27	CD30	CD31	CD32	CD34
Localidad	to de los Chen	ro de los Chen	to de los Chene	o de los Chene	o de los Chen	to de los Chene	ro de los Chene	to de los Chena
Litología	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita
Referencia	10	10	10	10	10	10	10	10
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	893	1089	1030	1050	987	928	1070	910
T [TA98]	856	1029	956	1001	930	871	996	842
T [Ca-in-opxNG10]	865	950	944	908	849	857	862	832
T [NTcpx]	844	1022	944	1007	924	862	995	833
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	16	23	20	23	19	18	22	14
P (Mercier 1980 opx)	15	16	16	17	15	16	16	16
Grado de fusión								
F (Hellebrand et al. 2001)	7,2	1,0	0,6	4,2	5,4	4,5	1,2	0,7
F (Batanova et al. 1998)	9,5	3,4	3,1	6,6	7,7	6,9	3,6	3,2

Orden	217	218	219	220	221	222	223	224
Muestra	CD35	CD50	CD61	CT 14-31	CT 14-31	CT 14-31	CT 14-31	CT 14-33
Localidad	to de los Chene	o de los Chene	o de los Chen	Cerro Tortuga				
Litología	Lherzolita	Lherzolita	Lherzolita	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Lherzolita
Referencia	10	10	10	11	11	11	11	11
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	943	890	974	821	791	847	777	984
T [TA98]	892	869	903	753	715	775	707	917
T [Ca-in-opxNG10]	801	824	811	841	831	832	852	948
T [NTcpx]	887	863	899	738	701	764	683	901
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	17	17	11	9	11	7	16
P (Mercier 1980 opx)	15	16	15	13	14	14	13	16
Grado de fusión								
F (Hellebrand et al. 2001)	2,8	6,9	1,9	14,8	12,5	12,6		1,8
F (Batanova et al. 1998)	5,2	9,1	4,3	16,8	14,6	14,7		4,2

Orden	225	226	227	228	229	230	231	232
Muestra	CT 14-33	CT 14-33	CT 14-34	CT 14-34	CT 14-34	CT 14-35	CT 14-35	CT 14-35
Localidad	Cerro Tortuga							
Litología	Lherzolita							
Referencia	11	11	11	11	11	11	11	11
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	942	940	961	965	958	884	906	918
T [TA98]	881	880	899	902	897	821	845	855
T [Ca-in-opxNG10]	947	961	937	941	937	916	917	905
T [NTcpx]	860	858	880	886	880	798	824	835
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	15	15	17	16	17	13	14	14
P (Mercier 1980 opx)	17	17	16	17	17	15	16	15
Grado de fusión								
F (Hellebrand et al. 2001)	1,7	1,3	1,5	1,5	1,6	1,0	0,7	0,9
F (Batanova et al. 1998)	4,1	3,8	3,9	4,0	4,0	3,5	3,2	3,3

Orden	233	234	235	236	237	238	239	240
Muestra	CT 14-40	CT 14-43	CT 14-43	CT 14-43				
Localidad	Cerro Tortuga							
Litología	Lherzolita							
Referencia	11	11	11	11	11	11	11	11
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	871	869	813	833	745	835	874	852
T [TA98]	804	801	750	726	652	764	808	789
T [Ca-in-opxNG10]	827	848	844	326	370	808	817	854
T [NTcpx]	789	784	728	751	671	743	782	762
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	12	11	7	10	6	9	13	11
P (Mercier 1980 opx)	14	14	13			14	13	14
Grado de fusión								
F (Hellebrand et al. 2001)	7,8	7,5	7,0			9,3	2,7	2,4
F (Batanova et al. 1998)	10,0	9,8	9,3			11,5	5,1	4,9
Orden	241	242	243	244	245	246	247	248
----------------------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------
Muestra	CT 14-51	CT 14-51	CT 14-51	CT 14-72				
Localidad	Cerro Tortuga							
Litología	Lherzolita							
Referencia	11	11	11	11	11	11	11	11
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	922	942	858	865	837	889	851	878
T [TA98]	857	883	803	793	773	825	790	825
T [Ca-in-opxNG10]	923	920	908	821	868	1310	923	823
T [NTcpx]	832	865	778	778	744	775	760	796
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	15	16	14	11	11	12	12	13
P (Mercier 1980 opx)	15	17	15	16	15	27	16	13
Grado de fusión								
F (Hellebrand et al. 2001)	1,4	1,3	2,0	1,2	0,9	0,9		
F (Batanova et al. 1998)	3,8	3,8	4,4	3,6	3,4	3,4		

Orden	249	250	251	252	253	254	255	256
Muestra	CT 14-73	CT 14-73	CT 14-73	CT 14-74	CT 14-74	CT 14-74	CT 14-77	CT 14-77
Localidad	Cerro Tortuga							
Litología	Lherzolita							
Referencia	11	11	11	11	11	11	11	11
Zona	С	С	С	С	С	С	С	С
Termómetros T [C]								
T [BKN]	1218	881	1184	986	975	973	938	936
T [TA98]	1127	808	1105	923	916	917	877	879
T [Ca-in-opxNG10]	831	865	868	944	948	932	945	927
T [NTcpx]	1161	791	1132	911	897	899	855	859
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	21	15	33	16	16	17	16	15
P (Mercier 1980 opx)	14	15	15	17	15	15	16	15
Grado de fusión								
F (Hellebrand et al. 2001)	10,1	9,9	10,1	2,0	1,8	2,1	0,2	0,2
F (Batanova et al. 1998)	12,3	12,1	12,3	4,5	4,2	4,5	2,7	2,7

Orden	257	258	259	260	261	262	263	264
Muestra	CT 14-77	CT 14-81	CT 14-81	CT 14-81	TL-18	DUB-2G	TL-101	TL-102
Localidad	Cerro Tortuga	Cerro Tortuga	Cerro Tortuga	Cerro Tortuga	Tres Lagos	pernador Grego	Tres Lagos	Tres Lagos
Litología	Lherzolita	Harzburgita	Harzburgita	Harzburgita	Sp-harzburgita	Werhlita	Sp-lherzolita	Sp-harzburgita
Referencia	11	11	11	11	3	3	12	12
Zona	С	С	С	С	S	S	S	S
Termómetros T [C]								
T [BKN]	954	851	857	893	897	871	811	836
T [TA98]	890	792	797	826	852	784	780	814
T [Ca-in-opxNG10]	934	843	837	853	866	853	859	797
T [NTcpx]	872	778	789	821	843	776	768	807
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	16	13	12	14	14	10	12	15
P (Mercier 1980 opx)	16	13	14	16	16	15	16	15
Grado de fusión								
F (Hellebrand et al. 2001)	0,4	12,1	11,7	12,0	2,6	3,7	6,8	8,3
F (Batanova et al. 1998)	2,9	14,3	13,8	14,1	5,0	6,1	9,1	10,6

Orden	265	266	267	268	269	270	271	272
Muestra	TL-103	TL-104	TL-105	TL-106	TL-107	TL-109	TL-110	TL-111
Localidad	Tres Lagos	Tres Lagos	Tres Lagos	Tres Lagos	Tres Lagos	Tres Lagos	Tres Lagos	Tres Lagos
Litología	Sp-harzburgita	Sp-harzburgita	Sp-lherzolita	Sp-lherzolita	Sp-lherzolita	Sp-lherzolita	Sp-lherzolita	Sp-lherzolita
Referencia	12	12	12	12	12	12	12	12
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	849	903	786	905	834	759	806	781
T [TA98]	824	889	767	895	801	766	776	762
T [Ca-in-opxNG10]	850	1302	810	861	809	920	801	796
T [NTcpx]	807	854	749	888	790	744	767	744
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	15	18	14	17	12	15	12	11
P (Mercier 1980 opx)	15	26	14	15	15	15	14	14
Grado de fusión								
F (Hellebrand et al. 2001)	6,2	7,1	8,6	7,7	3,5	9,9	10,4	2,9
F (Batanova et al. 1998)	8,5	9,4	10,8	10,0	5,9	12,2	12,6	5,3

Orden	273	274	275	276	277	278	279	280
Muestra	TL-112	TL-113	TL-114	TL-116	TL-117	TL-119	TL-120	TL-124
Localidad	Tres Lagos							
Litología	Sp-lherzolita							
Referencia	12	12	12	12	12	12	12	12
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	827	981	827	837	961	866	809	837
T [TA98]	786	921	788	791	955	811	770	789
T [Ca-in-opxNG10]	801	835	964	918	795	825	831	845
T [NTcpx]	774	925	770	773	963	801	749	777
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	11	17	12	13	21	12	11	12
P (Mercier 1980 opx)	15	17	17	15	14	15	14	15
Grado de fusión								
F (Hellebrand et al. 2001)	2,8	4,2	6,3	8,2	10,3	6,2	2,4	6,7
F (Batanova et al. 1998)	5,2	6,6	8,6	10,4	12,5	8,5	4,8	9,0

Orden	281	282	283	284	285	286	287	288
Muestra	dub40	dub1g	dub80	dub110	dub2g	dub27	MGP2b	MGP2b
Localidad	tancia Poklepo	tancia Poklepot	ancia Poklepo	ancia Poklepo	ancia Poklepo	ancia Poklepo	oancia Sol de M	ancia Sol de M
Litología	Sp-harzburgita	Sp-lherzolita	Lherzolita	Lherzolita	Wehrlita	Wehrlita	Lherzolita	Lherzolita
Referencia	13	13	13	13	13	13	14	14
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	1024	1037	1039	1064	1077	1099	1048	1016
T [TA98]	936	955	948	964	977	990	1004	986
T [Ca-in-opxNG10]	955	976	950	986	995	974	1052	1049
T [NTcpx]	924	951	946	954	984	997	1010	989
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	18	19	18	20		17	20	25
P (Mercier 1980 opx)	14	16	15	17	17	16	18	19
Grado de fusión								
F (Hellebrand et al. 2001)	12,5	13,1					14,1	13,9
F (Batanova et al. 1998)	14,6	15,2					16,2	16,0

Orden	289	290	291	292	293	294	295	296
Muestra	MGP2b	MGP2b2	MGP2b2	MGP2b2	MGP2b2	MGP2b2	MGP3b	MGP3b
Localidad	ancia Sol de M	ancia Sol de M	ancia Sol de M	ancia Sol de Ma	ancia Sol de M	ancia Sol de M	lancia Sol de M	ancia Sol de M
Litología	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Harzburgita	Harzburgita
Referencia	14	14	14	14	14	14	14	14
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	992	1044	984	1023	1034	954	959	1003
T [TA98]	949	1000	942	986	997	920	932	952
T [Ca-in-opxNG10]	1045	1027	1030	1041	1018	1053	1032	1021
T [NTcpx]	950	1012	943	991	1002	915	941	965
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	21	19	20	21	25	20	19	20
P (Mercier 1980 opx)	19	19	19	19	17	18	17	17
Grado de fusión								
F (Hellebrand et al. 2001)	13,9	14,3	14,4	14,3	14,4	14,6	18,8	18,8
F (Batanova et al. 1998)	16,0	16,4	16,5	16,3	16,5	16,6	20,8	20,8

Orden	297	298	299	300	301	302	303	304
Muestra	MGP3b	MGP3b	MGP3b	MGP3b	MGP3b	MGP4b	MGP4b	MGP4b
Localidad	ancia Sol de M	uncia Sol de M	uncia Sol de M	lancia Sol de M	ancia Sol de M			
Litología	Harzburgita	Harzburgita						
Referencia	14	14	14	14	14	14	14	14
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	1013	995	962	996	985	1019	1025	997
T [TA98]	972	952	916	952	942	961	975	949
T [Ca-in-opxNG10]	1023	1045	1023	1031	1043	1045	1024	1028
T [NTcpx]	989	965	926	965	953	963	978	949
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	21	22	18	21	21	20	19	18
P (Mercier 1980 opx)	19	20	17	15	16	18	15	15
Grado de fusión								
F (Hellebrand et al. 2001)	19,0	18,9	18,7			15,0	14,8	14,6
F (Batanova et al. 1998)	20,9	20,9	20,7			17,0	16,9	16,7

Orden	305	306	307	308	309	310	311	312
Muestra	MGP4b	MGP4b	MGP1b	MGP1b	MGP1b	MGP1b	MGP1b	MGP1b
Localidad	uncia Sol de M	ancia Sol de M	uncia Sol de M	ancia Sol de M	ancia Sol de M			
Litología	Harzburgita							
Referencia	14	14	14	14	14	14	14	14
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	1023	1023	1026	995	983	1040	1001	1005
T [TA98]	964	974	1011	968	959	1018	981	985
T [Ca-in-opxNG10]	1053	1014	1044	1003	999	1041	1029	1023
T [NTcpx]	966	980	1023	976	962	1029	985	991
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	19	19	26	22	21	24	21	23
P (Mercier 1980 opx)	19	17	18	19	17	19	17	18
Grado de fusión								
F (Hellebrand et al. 2001)	14,5	14,4	15,5	15,7	15,8	15,5		
F (Batanova et al. 1998)	16,6	16,5	17,5	17,7	17,9	17,6		

Orden	313	314	315	316	317	318	319	320
Muestra	MGP1b	MGP1b	MGP1b	MGP1c	MGP1c	CC3	CC6	CC7
Localidad	ancia Sol de M	Cerro Redondo	Cerro Redondo	Cerro Redondo				
Litología	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Harzburgita	Lh-1a	Lh-1a	Lh-1a
Referencia	14	14	14	14	14	6	6	6
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	1011	982	976	960	1010	940	910	1081
T [TA98]	989	961	957	897	949	865	863	1031
T [Ca-in-opxNG10]	1028	1037	1029	974	1004	904	909	1060
T [NTcpx]	995	967	956	913	966	855	852	1021
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	22	21	22	19	18	15	15	19
P (Mercier 1980 opx)	18	20	18	24	18	14	15	15
Grado de fusión								
F (Hellebrand et al. 2001)				16,5	16,9	6,2	5,3	8,1
F (Batanova et al. 1998)				18,5	18,9	8,5	7,7	10,4

Orden	321	322	323	324	325	326	327	328
Muestra	CC8	CC11	CC14	CC18	CC19	CC21	CC23	CC37
Localidad	Cerro Redondo							
Litología	Ha-1a	Lh-1a	Lh-1a	Lh-1a	Ha-1a	Ha-1a	Lh-1a	Lh-1a
Referencia	6	6	6	6	6	6	6	6
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	941	1109	1108	989	889	948	863	466
T [TA98]	886	1049	1085	925	843	909	802	
T [Ca-in-opxNG10]	928	950	790	769	932	981	830	849
T [NTcpx]	867	1063	1101	924	829	904	788	417
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	15	21	25	17	13	16	10	
P (Mercier 1980 opx)	13	15	14	12	13	16	14	15
Grado de fusión								
F (Hellebrand et al. 2001)	7,8	9,6	2,4	7,1	9,4	13,8	3,5	3,9
F (Batanova et al. 1998)	10,1	11,9	4,8	9,4	11,6	15,9	5,9	6,3

Orden	329	330	331	332	333	334	335	336
Muestra	CC38	GG31	GG54	GG71	GG79	GG4	GG85	GG112
Localidad	Cerro Redondo	pernador Grego	pernador Greg	oernador Grego				
Litología	Lh-1a	Lh-1a	Lh-1a	Lh-1a	Lh-1a	Ha-1a	Ha-1a	Ha-1a
Referencia	6	15	15	15	15	15	15	15
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	840	984	889	770	1010	1086	884	769
T [TA98]	799	912	889	778	951	1027	894	730
T [Ca-in-opxNG10]	857	862	939	761	990	1038	816	943
T [NTcpx]	786	906	883	762	935	1025	894	711
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	12	17	16	17	19	20	19	5
P (Mercier 1980 opx)	15	15	17	14	17	15	14	16
Grado de fusión								
F (Hellebrand et al. 2001)	6,0	5,7	9,9	6,8	4,0	14,3	11,7	10,5
F (Batanova et al. 1998)	8,4	8,1	12,1	9,1	6,3	16,4	13,9	12,6

Orden	337	338	339	340	341	342	343	344
Muestra	GG118	GG28	GG30	GG36	GG49	GG50	GG78	GG92
Localidad	pernador Grego							
Litología	Ha-1a	Lh-1b						
Referencia	15	6	6	6	6	6	15	6
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	914	1116	1100	1063	1106	1090	1132	1050
T [TA98]	903	1004	992	974	1072	1003	1064	977
T [Ca-in-opxNG10]	901	956	976	1013	1001	1015	1094	1012
T [NTcpx]	909	995	997	966	1049	985	1026	961
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	20	23	29	17	22	20	21	20
P (Mercier 1980 opx)	15	15	13	15	17	17	17	19
Grado de fusión								
F (Hellebrand et al. 2001)	16,6	10,7		14,5	8,7	6,2	8,8	9,7
F (Batanova et al. 1998)	18,6	12,9		16,5	11,0	8,5	11,0	11,9

Orden	345	346	347	348	349	350	351	352
Muestra	GG104	GG113	GG65	GG69	GG73	GG106	GG33	GG86
Localidad	pernador Greg	pernador Grego	pernador Grego	pernador Grego	pernador Greg	oernador Grego	pernador Grego	pernador Grego
Litología	Lh-1b	Lh-1b	Ha-1b	Lh-1b	Lh-1b	Ha-1b	We-1b	We-1b
Referencia	6	6	6	6	6	6	6	6
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	1035	1068	1087	1070	1105	1127	1025	1097
T [TA98]	958	965	986	986	1025	1013	967	981
T [Ca-in-opxNG10]	968	969	956	979	943	978	1027	978
T [NTcpx]	959	962	985	988	1040	1009	951	986
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	16	19	18	19	18	21	12	10
P (Mercier 1980 opx)	16	15	15	15	13	15	18	18
Grado de fusión								
F (Hellebrand et al. 2001)	15,1	13,3	14,1	13,4	16,7	14,2	14,8	
F (Batanova et al. 1998)	17,2	15,4	16,2	15,5	18,7	16,3	16,8	

Orden	353	354	355	356	357	358	359	360
Muestra	TL6	TL13	TL16	TL45	TL75	TL2	TL8	TL42
Localidad	Tres Lagos							
Litología	Lh-1a	Lh-1a	Lh-1a	Lh-1a	Lh-1a	Ha-1a	Ha-1a	Ha-1a
Referencia	6	6	6	6	6	6	6	6
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	1036	1083	1066	1037	1058	712	1404	969
T [TA98]	975	1014	990	965	1006	686		899
T [Ca-in-opxNG10]	1000	1006	956	955	979	973	2911	976
T [NTcpx]	952	1001	986	954	995	659	1050	884
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	18	21	20	20	18	2	21	17
P (Mercier 1980 opx)	16	17	16	16	16	15	90	17
Grado de fusión								
F (Hellebrand et al. 2001)	1,4	2,4	5,5	3,2	5,8	12,1	9,2	6,9
F (Batanova et al. 1998)	3,8	4,8	7,8	5,6	8,1	14,2	11,4	9,2

Orden	361	362	363	364	365	366	367	368
Muestra	TL57	TL66	TL78	TL72	PM27B-1B	PM27B-1B	PM27B-2c	PM27B-2c
Localidad	Tres Lagos	Tres Lagos	Tres Lagos	Tres Lagos	olcán Auverni	olcán Auverni	olcán Auverni	olcán Auverni
Litología	Ha-1a	Ha-1a	Ha-1a	Lh-1b	Harzburgita	Harzburgita	Harzburgita	Harzburgita
Referencia	6	6	6	6	16	16	16	16
Zona	S	S	S	S	S	S	S	S
Termómetros T [C]								
T [BKN]	989	1089	1015	1074	969	974	1073	1081
T [TA98]	916	1052	932	1027	901	902	995	1007
T [Ca-in-opxNG10]	968	1035	949	974	939	950	962	997
T [NTcpx]	916	1050	923	1006	890	890	994	1004
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	21	20	19	18	17	20	20
P (Mercier 1980 opx)	15	17	16	14	16	17	16	16
Grado de fusión								
F (Hellebrand et al. 2001)	15,6	10,6	7,3	1,1	9,4	9,5	12,9	12,9
F (Batanova et al. 1998)	17,7	12,8	9,6	3,6	11,7	11,7	15,0	15,0

Orden	369	370	371	372	373	374	375	376
Muestra	PM27A-9	PM27A-9	PM27B-2c	PM27B-2c	PM27A-9	PM27A-9	PA-24	CF1
Localidad	olcán Auverni	olcán Auverni	i olcán Auverni	olcán Auverni	olcán Auverni	olcán Auverni	Pali Aike	Cerro del Fraile
Litología	Lherzolita	Lherzolita	Harzburgita	Harzburgita	Lherzolita	Lherzolita	Grt-harzburgita	Dunita
Referencia	16	16	16	16	16	16	3	17
Zona	S	S	S	S	S	S	А	А
Termómetros T [C]								
T [BKN]	1030	1040	1073	1081	1030	1040	912	891
T [TA98]	929	936	995	1007	929	936	882	888
T [Ca-in-opxNG10]	939	945	962	997	939	945	942	990
T [NTcpx]	922	931	994	1004	922	931	859	891
Barómetros P [kb]								
p [BKN] granate							27	
P (Mercier 1980 cpx)	18	19	20	20	18	19	15	17
P (Mercier 1980 opx)	15	15	16	16	15	15	14	16
Grado de fusión								
F (Hellebrand et al. 2001)	11,7	11,5	12,9	12,9	11,7	11,5	14,1	15,3
F (Batanova et al. 1998)	13,8	13,7	15,0	15,0	13,8	13,7	16,2	17,3

Orden	377	378	379	380	381	382	383	384
Muestra	CF2	CF2	CF2	CF5	CF5	CF5	CF5	CF5
Localidad	Cerro del Frail	Cerro del Frail	Cerro del Fraile	Cerro del Frail	Cerro del Frail	Cerro del Fraile	Cerro del Frail	Cerro del Fraile
Litología	Harzburgita	Harzburgita	Harzburgita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Lherzolita
Referencia	17	17	17	17	17	17	17	17
Zona	А	А	А	А	А	А	А	А
Termómetros T [C]								
T [BKN]	848	887	731	898	902	900	907	852
T [TA98]	813	837	742	891	898	890	902	849
T [Ca-in-opxNG10]	942	932	952	966	984	978	959	978
T [NTcpx]	803	832	711	881	887	878	890	831
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	14	15	21	18	18	18	18	17
P (Mercier 1980 opx)	17	20	15	18	18	17	16	16
Grado de fusión								
F (Hellebrand et al. 2001)		8,8		8,8				
F (Batanova et al. 1998)		11,0		11,0				

Orden	385	386	387	388	389	390	391	392
Muestra	CF6-A	CF6-A	CF6-A	CF9	CF9	CF9	CF9	CF10
Localidad	Cerro del Frail	Cerro del Fraile	Cerro del Frailo	Cerro del Frail	Cerro del Frail	Cerro del Fraile	Cerro del Frail	Cerro del Fraile
Litología	Cpx poor Lh	Cpx poor Lh	Cpx poor Lh	Lherzolita	Lherzolita	Lherzolita	Lherzolita	Harzburgita
Referencia	17	17	17	17	17	17	17	17
Zona	А	А	А	А	А	А	А	А
Termómetros T [C]								
T [BKN]	816	817	895	914	928	929	901	969
T [TA98]	824	860	883	909	919	924	888	953
T [Ca-in-opxNG10]	904	847	1308	959	920	927	959	1028
T [NTcpx]	815	821	864	899	909	913	877	936
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	19	19	20	18	18	18	17	18
P (Mercier 1980 opx)	13		26	17	16	14	17	18
Grado de fusión								
F (Hellebrand et al. 2001)	15,7	15,5		6,3	6,4	5,4		6,8
F (Batanova et al. 1998)	17,7	17,6		8,6	8,7	7,8		9,1

Orden	393	394	395	396	397	398	399	400
Muestra	CF10	CF10	CF14	CF14	CF16	CF16	CF6-B	CF6-C
Localidad	Cerro del Frail	lCerro del Fraile						
Litología	Harzburgita	Harzburgita	Lherzolita	Lherzolita	Lherzolita	Lherzolita	(Opxte)	Websterita
Referencia	17	17	17	17	17	17	17	17
Zona	А	А	А	А	А	А	А	А
Termómetros T [C]								
T [BKN]	942	983	1002	992	866	806	862	895
T [TA98]	925	972	986	976	859	795	916	943
T [Ca-in-opxNG10]	1015	1006	1018	1029	926	844	982	1182
T [NTcpx]	907	959	977	964	850	779	889	914
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	18	18	18	17	20	16	18	18
P (Mercier 1980 opx)	17	17	17	18	18	15	19	24
Grado de fusión								
F (Hellebrand et al. 2001)			6,5	6,7	11,5			
F (Batanova et al. 1998)			8,8	9,0	13,7			

Orden	401	402	403	404	405	406	407	408
Muestra	CF6-C	Bxe32-I	Bxe32-II	Bxe32-III	Bxe11	Bxe11-I	Bxe31-I	Bxe35-I
Localidad	Cerro del Frail	Cerro del Frail	Cerro del Frail	Cerro del Frail	Cerro del Fraile	Cerro del Fraile	Cerro del Frailé	Cerro del Fraile
Litología	Websterita	Lherzolita sp	Lherzolita sp	Lherzolita sp	Lherzolita sp	Lherzolita sp	Lherzolita sp	Harzburgita
Referencia	17	18	18	18	18	18	18	18
Zona	А	А	А	А	А	А	А	А
Termómetros T [C]								
T [BKN]	1021	1024	1016	1022	914	925	1010	978
T [TA98]	1087	1011	1007	1011	888	905	998	960
T [Ca-in-opxNG10]	1324	1032	1035	1035	944	953	1019	975
T [NTcpx]	1053	1010	1003	1009	887	905	992	956
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	25	21	21	21	21	22	20	20
P (Mercier 1980 opx)	28	18	17	18	17	17	17	18
Grado de fusión								
F (Hellebrand et al. 2001)		10,1	10,3	9,8	13,3	12,8	8,3	6,5
F (Batanova et al. 1998)		12,3	12,5	12,0	15,4	14,9	10,6	8,8

Orden	409	410	411	412	413	414	415	416
Muestra	LS2	TM-1	BN-35	BN-71	BN-93	LS-20	LS-33	Cu 12
Localidad	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Las Cumbres
Litología	Lherzolita	Lherzolita gt	Lherzolita gt	Lherzolita	Lherzolita sp	Lherzolita	Lherzolita gt	Ha-2
Referencia	19	19	19	19	19	19	19	6
Zona	А	А	А	А	А	А	А	А
Termómetros T [C]								
T [BKN]	703	1031	1047	1041	1066	1043	1175	989
T [TA98]	748	1002	1022	1057	1034	1058	1157	963
T [Ca-in-opxNG10]	820	1014	1025	1024	993	1044	1191	960
T [NTcpx]	709	996	1017	1054	1025	1052	1154	976
Barómetros P [kb]								
p [BKN] granate		29	28				25	
P (Mercier 1980 cpx)	1	19	20	20	20	18	24	23
P (Mercier 1980 opx)	12	18	19	15	15	15	21	18
Grado de fusión								
F (Hellebrand et al. 2001)								17,6
F (Batanova et al. 1998)								19,6

Orden	417	418	419	420	421	422	423	424
Muestra	Cu 21	Cu 22	Fr3	Fr4	CF5	CF6	CFX	Cu13
Localidad	Las Cumbres	Las Cumbres	Cerro Fraile	Las Cumbres				
Litología	Lh-1a	Ha-1a	Lh-1a	Lh-2	Ha-1a	Lh-1a	Lh-2	Facies sp
Referencia	6	6	6	6	6	6	6	20
Zona	А	А	А	А	А	А	А	А
Termómetros T [C]								
T [BKN]	913	987	915	962	827	887	901	852
T [TA98]	909	956	903	944	823	881	893	835
T [Ca-in-opxNG10]	962	945	957	965	913	977	952	961
T [NTcpx]	896	968	894	938	819	867	886	827
Barómetros P [kb]								
p [BKN] granate								
P (Mercier 1980 cpx)	17	19	16	15	18	16	18	13
P (Mercier 1980 opx)	16	17	17	17	18	18	18	16
Grado de fusión								
F (Hellebrand et al. 2001)	8,9	15,8	7,5	6,5				14,1
F (Batanova et al. 1998)	11,1	17,9	9,7	8,8				16,1

Orden	425	426	427	428	429	430	431	432
Muestra	TA10	TA19	TA26	TA28	TA30	LA1	LA2	LA8
Localidad	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike
Litología	Facies gt	Facies gt/sp	Facies gt/sp	Facies gt/sp				
Referencia	20	20	20	20	20	20	20	20
Zona	А	А	А	А	А	А	А	А
Termómetros T [C]								
T [BKN]	1038	1076	1065	1233	1007	1338	1325	1177
T [TA98]	908	997	945	1153	930	1289	1309	1092
T [Ca-in-opxNG10]	982	975	988	1003	971	1093	1186	1032
T [NTcpx]	891	992	929	1166	911	1314	1294	1094
Barómetros P [kb]								
p [BKN] granate	98	64	56	34	29	33	19	30
P (Mercier 1980 cpx)	18	20	20	27	19	25	29	25
P (Mercier 1980 opx)	17	15	18	17	16	15	16	17
Grado de fusión								
Γ (II II 1 1 1 (1 2001)								

F (Hellebrand et al. 2001)

F (Batanova et al. 1998)

Orden	433	434	435	436	437	438
Muestra	LA10	LA11	LA23	LA36	Pk	TA34
Localidad	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike	Pali-Aike
Litología	Facies gt/sp	Facies gt/sp	Facies sp	Facies sp	Facies sp	Facies sp
Referencia	20	20	20	20	20	20
Zona	А	А	А	А	А	А
Termómetros T [C]						
T [BKN]	1144	966	1180	845	982	644
T [TA98]	1089	908	1090	790	918	616
T [Ca-in-opxNG10]	1043	1047	1015	916	977	907
T [NTcpx]	1086	874	1109	769	904	589
Barómetros P [kb]						
p [BKN] granate	34	37				
P (Mercier 1980 cpx)	21	16	21	9	20	
P (Mercier 1980 opx)	12	15	13	14	17	14
Grado de fusión						
F (Hellebrand et al. 2001)			18,1	8,6	9,2	15,0
F (Batanova et al. 1998)			20,1	10,8	11,4	17,1